高级检索

热输入对QT900对接焊CGHAZ韧性的影响

侯春锋, 石凯, 李霄, 梁维

侯春锋, 石凯, 李霄, 梁维. 热输入对QT900对接焊CGHAZ韧性的影响[J]. 焊接学报, 2017, 38(5): 120-124. DOI: 10.12073/j.hjxb.20170527
引用本文: 侯春锋, 石凯, 李霄, 梁维. 热输入对QT900对接焊CGHAZ韧性的影响[J]. 焊接学报, 2017, 38(5): 120-124. DOI: 10.12073/j.hjxb.20170527
HOU Chunfeng, SHI Kai, LI Xiao, LIANG Wei. Influence of heat input on toughness in coarse grain zone of QT900 coiled tubing butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 120-124. DOI: 10.12073/j.hjxb.20170527
Citation: HOU Chunfeng, SHI Kai, LI Xiao, LIANG Wei. Influence of heat input on toughness in coarse grain zone of QT900 coiled tubing butt welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 120-124. DOI: 10.12073/j.hjxb.20170527

热输入对QT900对接焊CGHAZ韧性的影响

Influence of heat input on toughness in coarse grain zone of QT900 coiled tubing butt welding

  • 摘要: 文中采用热模拟技术、显微分析技术和断口分析等手段,研究了焊接热输入对QT900连续油管对接焊焊接热影响区粗晶区冲击韧性的影响规律及其脆化机理.结果表明,5 kJ/cm的焊接热输入下热影响区粗晶区可获得板条束细小的针状贝氏体,有利于吸收冲击能量,冲击韧性优良;随着焊接热输入从5 kJ/cm增大到10 kJ/cm,热影响区粗晶区晶粒尺寸增大,贝氏体铁素体板条变宽,并且沿着原始奥氏体晶界析出了网状的仿晶型铁素体,导致热影响区粗晶区韧性的恶化.
    Abstract: In this paper, thermal simulation technology, microscope analysis and fracture surface topography analysis techniques are used to study the influence of heat input on the impact toughness and embrittlement mechanism of coarse grain zone in butt weld of QT900 coiled tubing.The result shows that fine needle lathe bainite can be obtained under 5 kJ/cm heat input, it improves impact energy and provides good impact toughness to coarse grain zone; with the heat input increaseed from 5 kJ/cm to 10 kJ/cm, grain size increases in coarse grain zone, bainitic ferrite laths become widen, and the grain boundary allotriomorphs will nucleate and grow along the original austenite grain boundaries, which decrease toughness in coarse grain zone.
  • [1] Meester B De. The weldability of modern structural TMCP steels[J]. The Iron and Steel Institute of Japan International, 1997, 37(6): 537-551.
    [2] 张贵锋, 张建勋. 日本关于超细晶粒钢制备与焊接新工艺的研究进展[J]. 材料导报, 2005, 19(9): 94-96. Zhang Guifeng, Zhang Jianxun. Recent progress in new producing and welding process for ultrafine-grained steels in Japan[J]. Materials Review, 2005, 19(9): 94-96.
    [3] 屈朝霞, 田志凌, 何长红, 等. 超细晶粒钢及其焊接性[J]. 钢铁, 2000, 35(2): 31-35. Qu Zhaoxia, Tian Zhiling, He Changhong, et al. Ultra-fine grained steel and its weld ability[J]. Iron and Steel, 2000, 35(2): 31-35.
    [4] 雷 毅, 余圣甫, 许晓锋. 我国微米级超细晶粒钢焊接技术的研究现[J]. 兵器材料科学与工程, 2005, 28(3): 44-47. Lei Yi, Yu Shengfu, Xu Xiaofeng. Current status of domestic welding technique on micron class ultra-fine grain steel[J]. Ordnance Material Science and Engineering, 2005, 28(3): 44-47.
    [5] Newman K R, Brown P A, Van Arnam P A, et al. Analysis of coiled tubing welding techniques[C]//Mont-gomery, Texas: SPE/ICoTA North American coiled tubing round table[C]. 1996: 1-6.
    [6] Luft H B, BJ Services. Development of welding procedure specification for girth welds in coiled tubing[C]//Houston, Texas: SPE/ICoTA coiled tubing round table[C]. 1999: 1-16.
    [7] Suggested field welding procedure (GTAW) for coiled tubing grades HS70, HS80, HS90, HS110[S/OL]. http://www.tenaris.com/shared/documents/files/CB372.pdf.
    [8] 张燕娜, 石 凯, 刘彦明, 等. 现场连续油管对接全位置自动焊技术探讨[J]. 热加工工艺, 2010, 39(7): 110-112. Zhang Yanna, Shi Kai, Liu Yanming, et al. Investigation on automatic welding technique of full circumference in butt welding for coiled tubing[J]. Hot Working Technology, 2010, 39(7): 110-112.
    [9] 徐克彬, 李志勇, 王延勇, 等. 连续管对口焊接技术及现场应用[J]. 石油机械, 2012, 40(11): 112-115. Xu Kebin, Li Zhiyong, Wang Yanyong, et al. Joint weld technology for CT and field application[J]. China Petroleum Machinery, 2012, 40(11): 112-115.
    [10] 李 霄, 石 凯, 王洪铎, 等. CT80连续油管TIG焊对接接头热循环过程研究[J]. 热加工工艺, 2011, 40(9): 168-170. Li Xiao, Shi Kai, Wang Hongduo, et al. Welding thermal cycle of CT 80 coiled tube butt joint by TIG welding[J]. Hot Working Technology, 2011, 40(9): 168-170.
    [11] 张 敏, 赵鹏康, 王文武, 等. 连续油管TIG焊接热影响区组织及性能热模拟分析[J]. 兵器材料科学与工程, 2011, 34(1): 31-34. Zhang Min, Zhao Pengkang, Wang Wenwu, et al. Thermal simulation of microstructure and properties of heat-affected zone in TIG welding for coiled tubing[J]. Ordnance Material Science and Engineering, 2011, 34(1): 31-34.
    [12] 方鸿生, 白秉哲, 郑秀华, 等. 粒状贝氏体和粒状组织的形态与相变[J]. 金属学报, 1986, 22(4): 283-288. Fang Hongsheng, Bai Bingzhe, Zheng Xiuhua, et al. Morphology and phase transformation of granular bainite and granular structure[J]. Acta Metallurgica Sinica, 1986, 22(4): 283-288.
    [13] 康沫狂. 钢中的贝氏体形貌学探讨[C]//康沫狂. 贝氏体与贝氏钢—纪念康沫先生九十华诞论文集[C]. 北京: 科学出版社, 2009.
    [14] 王 学, 常建伟, 黄关政, 等. WB36钢临界再热粗晶区组织性能[J]. 焊接学报, 2008, 29(10): 29-32. Wang Xue, Chang Jianwei, Huang Guanzheng, et al. Study on microstructure and properties of IRCGHAZ in WB36 steel[J]. Transactions of the China Welding Institution, 2008, 29(10): 29-32.
  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  457
  • HTML全文浏览量:  4
  • PDF下载量:  441
  • 被引次数: 2
出版历程
  • 收稿日期:  2015-05-06

目录

    /

    返回文章
    返回