高级检索

基于脉冲激光GMAW熔滴尺寸与过渡频率的控制

马正住, 朱加雷, 周灿丰, 李卫强

马正住, 朱加雷, 周灿丰, 李卫强. 基于脉冲激光GMAW熔滴尺寸与过渡频率的控制[J]. 焊接学报, 2017, 38(5): 49-52,57. DOI: 10.12073/j.hjxb.20170511
引用本文: 马正住, 朱加雷, 周灿丰, 李卫强. 基于脉冲激光GMAW熔滴尺寸与过渡频率的控制[J]. 焊接学报, 2017, 38(5): 49-52,57. DOI: 10.12073/j.hjxb.20170511
MA Zhengzhu, ZHU Jialei, ZHOU Canfeng, LI Weiqiang. Control on droplet size and metal transfer frequency based on pulsed laser in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 49-52,57. DOI: 10.12073/j.hjxb.20170511
Citation: MA Zhengzhu, ZHU Jialei, ZHOU Canfeng, LI Weiqiang. Control on droplet size and metal transfer frequency based on pulsed laser in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 49-52,57. DOI: 10.12073/j.hjxb.20170511

基于脉冲激光GMAW熔滴尺寸与过渡频率的控制

基金项目: 国家自然科学基金资助项目(51205026,51175046);北京市属高校创新团队建设提升计划资助项目(IDHT20130516);北京石油化工学院优秀教师和管理骨干培育计划资助项目(BIPT-BPOYTMB-2013)

Control on droplet size and metal transfer frequency based on pulsed laser in GMAW

  • 摘要: 针对水下焊接修复中存在的射滴过渡可选参数范围狭窄、热输入高、焊接残余应力等问题,文中基于水下高压焊接试验舱,建立了包含多信号同步采集的激光增强GMAW试验平台,并在常压环境下进行了工艺试验.结果表明,合理选择激光作用位置和激光脉冲占空比,通过激光辅助作用,熔滴过渡摆脱了对焊接电流的主导性依赖,实现激光对GMAW熔滴过渡的主动控制.试验结果及相关理论分析为进一步的高压干法水下焊接过程稳定性控制研究及海洋工程应用奠定了基础.
    Abstract: To solve a series of problems existing in the projected droplet transfer of underwater welding such as narrow optional parameter, high input and residual stress, a laser-enhanced GMAW experiment platform including welding multi-information synchronization system was established and related experiment in atmospheric environment was conducted based on the underwater hyperbaric welding test tank in this paper. Result shows that droplet transfer gets rid of dominance of welding current and laser controls GMAW metal transfer actively with the assistance of laser when reasonable irradiation position and duty cycle of pulsed laser is selected. Result of experiment and related analysis laid a solid foundation on the further research of welding process stability control in underwater hyperbaric welding and ocean engineering.
  • [1] Nixon J. Underwater repair technology[M]. Cambridge:Woodhead Publishing Ltd., 2000.
    [2] Subramaniam S, White D R, Lyons D W. Droplet transfer in pulsed gas metal arc welding of aluminum[J]. Welding Journal, 1988, 77(11): 458-464.
    [3] 杨世彦, 王其隆, 刘井权, 等. 实现稳定射滴过渡的MAG焊接新工艺[J]. 焊接学报, 1998(s1): 112-116. Yang Shiyan, Wang Qilong, Liu Jingquan, et al. A new MAG welding technology with stable projected trasfer[J]. Transactions of the China Welding Institution, 1998(s1): 112-116.
    [4] Huang Y, Zhang Y M. Laser-enhanced GMAW[J]. Welding Journal, 2010, 89(9): 181-188.
    [5] Huang Y, Zhang Y M. Laser enhanced metal transfer-part Ⅰ: system and observations[J]. Welding Journal, 2011, 90(10): 83-90.
    [6] Huang Y, Zhang Y M. Laser enhanced metal transfer-part Ⅱ: analysis and influence factor[J]. Welding Journal, 2011, 90(11): 205-210.
    [7] Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing[J]. Journal of Physics D: Applied Physics, 1997, 30: 2541-2552.
    [8] 殷树言. 气体保护焊工艺基础[M]. 北京: 机械工业出版社, 2007.
计量
  • 文章访问数:  389
  • HTML全文浏览量:  3
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-05

目录

    /

    返回文章
    返回