残余应力对管线钢韧性断裂的影响
Effect of residual stresses on ductile fracture of pipeline steels
-
摘要: 以弹塑性断裂力学理论为基础,应用ABAQUS有限元软件,采用固有应变法引入残余应力,并基于细观塑性损伤模型研究了残余应力对管线钢韧性裂纹扩展阻力曲线的影响.模型中选择了具有不同深浅裂纹的单边缺口弯曲(SENB)试样和DNV推荐准则中用于管线钢断裂评估的单边缺口拉伸(SENT)试样,并对这两种断裂力学试样在大范围屈服条件下的裂纹扩展阻力曲线(CTOD-R曲线)行为进行了对比分析.结果表明,对于深裂纹试样,残余应力降低了韧性裂纹扩展阻力曲线,而浅裂纹试样受残余应力的影响可忽略不计.
-
关键词:
- 焊接残余应力 /
- 韧性裂纹扩展阻力曲线 /
- 大范围屈服 /
- 有限元模拟
Abstract: Welding residual stress is one of the main concerns for fabrication and operation of steel structural due to its potential effect on structural integrity. This paper focuses on the influence of welding residual stress on ductile crack growth resistance of pipeline steels based on the elastic-plastic fracture mechanics theory and the constitutive models. Residual stresses were introduced into the model by using the so-called eigenstrain method. The complete Gurson model has been employed to calculate the ductile crack growth resistance based on the ABAQUS finite element software. The ductile crack growth resistance curves (CTOD-R curve) at large yielding conditions were numerically calculated and analyzed using the single edge notched bending (SENB) specimens and the single notched tension (SENT) specimens. Results show that residual stresses reduce the ductile crack growth resistance for deep-cracked specimens. However, for the shallow-cracked specimens, the effect of residual stress on ductile crack growth resistance can be ignored. -
-
[1] Mahmoudi A H, Truman C E, Smith D J, et al. Using local out-of-plane compression(LOPC) to study the effects of residual stress on apparent fracture toughness[J]. Engineering Fracture Mechanics, 2008, 75(6): 1516-1534. [2] Mirzaee-Sisan A, Truman C E, Smith D J, et al. Interaction of residual stress with mechanical loading in an austenitic stainless steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 31(3-4): 223-233. [3] 王 涛, 杨建国, 刘雪松, 等. 含中心裂纹低匹配对接接头形状参数对形状因子的影响[J]. 焊接学报, 2012, 33(1): 101-104. Wang Tao, Yang Jianguo, Liu Xuesong, et al. Influence of joint geometric parameters on shape factor of under-matched butt joint with center crack[J]. Transactions of the China Welding Institution, 2012, 33(1): 101-104. [4] 方洪渊, 张学秋, 杨建国, 等. 焊接应力场与应变场的计算与讨论[J]. 焊接学报, 2008, 29(3): 129-132. Fang Hongyuan, Zhang Xueqiu, Yang Jianguo, et al. Calculation and discussion of welding stress and strain field[J]. Transactions of the China Welding Institution, 2008, 29(3): 129-132. [5] Veritas D N. Fracture control for pipeline installation methods introducing cyclic plastic strain[S]. Recommended Practice DNV-RP-F108, 2006. [6] Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490. [7] Zhang Z L, Thaulow C, Øegård J, et al. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2): 155-168. [8] Xu J, Zhang Z L, Østby E, et al. Constraint effect on the ductile crack growth resistance of circumferentially cracked pipes[J]. Engineering Fracture Mechanics, 2010, 77(4): 671-684. -
期刊类型引用(1)
1. 薛海涛,魏鑫,郭卫兵,张小明. 活性元素Ti和SiO_2界面结合机制的第一性原理计算. 焊接学报. 2020(01): 67-71+100-101 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 525
- HTML全文浏览量: 12
- PDF下载量: 259
- 被引次数: 2