紧密对接焊缝多尺度形态学磁光成像检测方法
Detection of tight-butt joint weld based on multi-scale morphology of magneto-optical image
-
摘要: 利用磁光传感器获取紧密对接微间隙(0~0.1 mm)焊缝磁光图像.针对传统形态学图像处理方法检测微间隙焊缝时容易出现边缘细节丢失的问题和存在检测精度不高的缺点,在四个不同方向上各选取三种不同尺度的结构元素,应用多尺度多结构元素形态学方法提取微间隙焊缝边缘信息,并与小波边缘检测和Sobel边缘检测结果相比较.在激励磁场变化情况下进行三组试验,分别采用多尺度形态学算法和传统形态学算法提取焊缝中心位置.结果表明,多尺度多结构元素形态学算法能更有效地检测出微间隙焊缝中心位置,为紧密对接焊缝的识别与跟踪控制提供试验依据.Abstract: A magneto-optical sensor is applied to acquire magneto-optical images of tight-butt joint weld whose width is less than 0.1mm. Edge details are often missed and the accuracy of weld detection is influenced when traditional morphology algorithm is applied to detect the edge of micro-gap weld magneto-optical image. Thus, selecting structure elements of three different scales at each different four directions with an approach of multi scales and multi structure elements based on morphology is used to acquire the micro-gap weld edge information. Also, the multi-scale edge detection result is compared with those results using traditional wavelet transform and Sobel algorithm. Three groups of experiments are carried out under different magnetic induction fields to detect the weld center by using the approaches based on multi-scale morphology and traditional morphology, respectively. According to the results, the multi scales and multi structure elements approach can obtain the micro-gap weld center more effectively, which provides a testing basis for tight-butt joint weld recognition and tracking.
-
-
[1] Gao X D, You D Y, Katayama S. Seam tracking monitoring based on adaptivekalman filter embedded elman neural network during high-power fiber laser welding[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4315-4325. [2] 陈海永, 孙鹤旭, 徐 德. 一类窄焊缝的结构光图像特征提取方法[J]. 焊接学报, 2012, 33(1): 61-64. Chen Haiyong, Sun Hexu, Xu De. An image feature extraction method for a certain kind of narrow gap weld seam[J]. Transactions of the China Welding Institution, 2012, 33(1): 61-64. [3] 高向东, 甄任贺. 微间隙焊缝磁光成像检测方法[J]. 焊接学报, 2014, 35(4): 11-14. Gao Xiangdong, Zhen Renhe. A method to detect micro weld joint based on magneto-optical imaging[J]. Transactions of the China Welding Institution, 2014, 35(4): 11-14. [4] Curic V, Landström A, Thurley M J, et al. Adaptive mathematical morphology-a survey of the field[J]. Pattern Recognition Letters, 2014, 47(1): 18-28. [5] 李 刚, 贺昱曜. 多方位结构元素路面裂缝图像边缘检测算法[J]. 计算机工程与应用, 2010, 46(1): 224-226. Li Gang, He Yuyao. Edge detection for road crack image with multi-direction morphological structuring elements[J]. Computer Engineering and Applications, 2010, 46(1): 224-226. [6] Zhou H, Peng D, Wang X, et al. A novel algorithm of edge location based on omni-directional and multi-scale MM[J]. Journal of Computers, 2014, 9(4): 990-997. -
期刊类型引用(4)
1. 邓嘉宏,刘红,刘继帼. 机械振动对2A14铝合金TIG焊接接头组织与性能的影响. 轻合金加工技术. 2021(05): 56-61 . 百度学术
2. 魏保立,罗坤,付伟,罗丽兰. 机械振动对2A14铝合金TIG焊接接头组织与性能的影响. 轻合金加工技术. 2021(04): 68-73 . 百度学术
3. 李威旺,卢庆华,任新怀,白永真. 5052铝合金高频微振激光焊接头气孔及组织研究. 焊接技术. 2019(09): 16-20+7 . 百度学术
4. 丁春辉,刘长军. AA7075超硬铝合金双脉冲MIG焊-机械振动联合工艺优化. 热加工工艺. 2018(09): 216-218+221 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 442
- HTML全文浏览量: 1
- PDF下载量: 427
- 被引次数: 5