高级检索

6061铝合金超声波点焊温度场数值模拟及试验

李玉龙, 刘达繁, 茶映鹏

李玉龙, 刘达繁, 茶映鹏. 6061铝合金超声波点焊温度场数值模拟及试验[J]. 焊接学报, 2017, 38(4): 13-16. DOI: 10.12073/j.hjxb.20170403
引用本文: 李玉龙, 刘达繁, 茶映鹏. 6061铝合金超声波点焊温度场数值模拟及试验[J]. 焊接学报, 2017, 38(4): 13-16. DOI: 10.12073/j.hjxb.20170403
LI Yulong, LIU Dafan, CHA Yingpeng. Simulation and experiments of ultrasonic welding temperature field of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 13-16. DOI: 10.12073/j.hjxb.20170403
Citation: LI Yulong, LIU Dafan, CHA Yingpeng. Simulation and experiments of ultrasonic welding temperature field of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 13-16. DOI: 10.12073/j.hjxb.20170403

6061铝合金超声波点焊温度场数值模拟及试验

基金项目: 教育部留学回国人员科研启动基金;江西省自然科学基金资助项目(20132BAB206024)

Simulation and experiments of ultrasonic welding temperature field of 6061 aluminum alloy

  • 摘要: 针对超声波焊接过程中温度演化过程监测存在的困难,考虑焊接过程中塑性变形产热和高频摩擦产热,建立了三维超声波焊接热-结构耦合Ansys有限元模型,模拟了6061铝合金超声波金属焊接过程,计算了不同焊接参数下的温度场,用细丝热电偶测温试验验证了焊接温度.结果表明,焊接过程中焊接区域最高温度模拟值与试验值误差在5%以内,表明了模型的准确性;温度最高处位于焊接区域中心位置,高温区随焊接时间的增大而增大;超声波金属焊接过程中,温度场主要受焊接压力及焊接时间的影响.
    Abstract: An attempt in situ monitor temperature evolution during the ultrasonic welding process within a few hundred milliseconds, a 3D thermal-mechanical coupling finite model in ANSYS software was established. In this study, the ultrasonic welding process of 6061 aluminum alloys was analyzed, the temperature fields of different welding parameters were simulated, and the associated welding temperature was tested by using fine-wire thermocouples. The results show that the accuracy of the finite model was verified for the highest temperature errors between the experimental values and the simulated values were within 5%, the highest temperature regions located in the central region of welding zone and the area of the highest temperature regions enlarged as the welding time increased, and the temperature fields were mainly effected by the welding pressure and time.
  • [1] 李 东, 赵杨洋, 张延松. 焊接能量对铝/铜超声波焊接接头显微组织的影响[J]. 焊接学报, 2014, 35(2): 47-50. Li Dong, Zhao Yangyang, Zhang Yansong. Effect of welding energy on microstructures of the Al/Cu joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2014, 35(2): 47-50.
    [2] 曾 纯, 朱政强, 陈长青, 等. 超声波金属焊接过程中的的温度与应力分布[J]. 上海交通大学学报, 2010, 44(S1): 54-57. Zeng Chun, Zhu Zhengqiang, Chen Changqing, et al. Temperature and stress distribution in ultrasonic metal welding[J]. Journal of Shanghai Jiaotong University. 2010, 44(S1): 54-57.
    [3] Elangovan S, Semeer S, Prakasan K. Temperature and stress distribution in ultrasonic metal welding—An FEA-based study[J]. Journal of Materials Processing Technology, 2009, 209(3): 1143-1150.
    [4] De Vries E. Mechanics and mechanisms of ultrasonic metal welding[D]. Ohio: The Ohio State University, 2004.
    [5] Zhang C S A M, Li L. A coupled thermal-mechanical analysis of ultrasonic bonding mechanism[J]. Metallurgical and Materials Transactions B, 2009, 40(2): 196-207.
    [6] Siddiq A, Ghassemieh E. Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects[J]. Mechanics of Materials, 2008, 40(12): 982-1000.
    [7] Yadav S. Thermo-mechanical analysis of ultrasonic metal welding for rapid manufacturing[D]. Boston: Tufts University, 2001.
    [8] 林海雄, 王 军, 万珍平. 铝片-铜管太阳能集热板超声波焊接温度试验[J]. 焊接技术, 2012, 41(11): 8-12. Lin Haixiong, Wang Jun, Wan Zhenping. Experimentalstudy on ultrasonic welding temperature of aluminum sheet-copper tube solar collector[J]. Welding Technology, 2012, 41(11): 8-12.
    [9] Cheng X, Li X. Investigation of heat generation in ultrasonic metal welding using micro sensor arrays[J]. Journal of Micromechanics and Microengineering, 2007, 17(2): 273-282.
    [10] 马庆芳, 方荣生. 实用热物理性质手册[M]. 北京: 中国农业机械出版社, 1986.
    [11] 中国金属学会, 中国有色金属学会. 金属材料物理性能手册(第一册)[M]. 北京: 冶金工业出版社, 1987.
    [12] 吴 影, 陈 辉, 苟国庆, 等. 高速列车用6061和7N01铝合金焊接接头断裂韧性分析[J]. 焊接学报, 2014, 35(9): 77-81. Wu Ying, Chen Hui, Gou Guoqing, et al. Fracture toughness of 6061 and 7N01 aluminum alloy welded joints for high-speed train [J]. Transactions of the China Welding Institution, 2014,35 (9): 77-81.
    [13] 尚淑珍, 路贵民, 赵祖欣. 6061铝合金半固态坏料部分重熔过程中的组织演变[J]. 机械工程材料, 2010, 34(2): 1-3,7. Shang Shuzhen, Lu Guimin, Zhao Zuxin. Microstructure evolution of semi-solid 6061 aluminium alloy billet during partial remelting[J]. Materials for Mechanical Engineering, 2010, 34(2): 1-3,7.
  • 期刊类型引用(8)

    1. 肖钢,赵伦,Zeshan Abbas,苏健雄. 轻合金超声波焊接研究进展. 深圳职业技术大学学报. 2024(06): 81-87 . 百度学术
    2. 闵少松,朱志洁,陆雷俊,孟庆旭. 基于相控阵超声的铝合金焊接监测方法. 江苏船舶. 2023(03): 39-42 . 百度学术
    3. 杨拓宇. 真空钎焊3003波导钎缝组织及变形研究. 热加工工艺. 2020(09): 140-143 . 百度学术
    4. 彭和,Chen Daolun,蒋显全,白雪飞. 金属材料超声波点焊研究进展. 材料导报. 2020(11): 11064-11070 . 百度学术
    5. 倪增磊,杨嘉佳,李帅,王星星,叶福兴. 金属薄材超声波点焊的研究进展. 焊接. 2020(04): 33-41+63 . 百度学术
    6. 杨庭飞,朱永伟,赵青青. 塑料组合构件高效超声波焊接的仿真与实验. 工程塑料应用. 2019(02): 52-58 . 百度学术
    7. 周斌楠,张敏. 大直径电感与导线超声波金属焊接的研究. 科技创新与应用. 2019(31): 101-104 . 百度学术
    8. 杨庭飞,谢洋阳,葛永成,朱永伟. 摩擦辅助超声波焊接塑料构件成热机理与应用. 塑料. 2019(05): 84-88 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  344
  • HTML全文浏览量:  7
  • PDF下载量:  251
  • 被引次数: 14
出版历程
  • 收稿日期:  2015-01-05

目录

    /

    返回文章
    返回