高级检索

片状偏钨极电弧特性的数值模拟

李渊博, 李霄, 王世清, 董会

李渊博, 李霄, 王世清, 董会. 片状偏钨极电弧特性的数值模拟[J]. 焊接学报, 2017, 38(4): 7-12. DOI: 10.12073/j.hjxb.20170402
引用本文: 李渊博, 李霄, 王世清, 董会. 片状偏钨极电弧特性的数值模拟[J]. 焊接学报, 2017, 38(4): 7-12. DOI: 10.12073/j.hjxb.20170402
LI Yuanbo, LI Xiao, WANG Shiqing, DONG Hui. Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 7-12. DOI: 10.12073/j.hjxb.20170402
Citation: LI Yuanbo, LI Xiao, WANG Shiqing, DONG Hui. Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 7-12. DOI: 10.12073/j.hjxb.20170402

片状偏钨极电弧特性的数值模拟

基金项目: 国家自然科学基金资助项目(51605384);陕西省教育厅专项科研计划资助项目(15JK1575);西安石油大学青年科研创新团队资助项目(2015QNKYCXTD02);西安石油大学《材料科学与工程》省级优势学科资助项目

Numerical simulation of arc in sheet slanting electrode tungsten insert gas welding

  • 摘要: 基于流体力学和麦克斯韦方程组,建立片状偏钨极电弧三维数学模型,计算得到电弧温度场、流场、电场及电流密度分布.结果表明,片状偏钨极厚度方向电弧温度场、流场、电场及电流密度呈对称分布;相同焊接工艺参数下,片状偏钨极电弧最高温度、最大流速及电流密度小于圆柱钨极电弧;电流密度受片状偏钨极前端斜边引导作用和电弧惯性后拖效应的共同影响,其分布范围沿钨极宽度方向扩展,且电弧等温线在该方向上扩张;片状偏钨极前端斜边倾角的改变,会引起电流密度在钨极前端局部集中,并导致阴极下方高温区和阴极射流沿斜边偏移.
    Abstract: The three-dimensional quasi-steady state mathematical model of arc in sheet slanting electrode tungsten insert gas welding is presented based on the fluid dynamic equations and Maxwell equations. The distributions of temperature field, velocity field, electrical field and current density about arc in sheet slanting tungsten electrode are obtained. The results show that the temperature field, velocity field, electric field and current density of arc are symmetric in the thickness direction of sheet slanting tungsten electrode. The maximum temperature, velocity and current density of arc in sheet slanting tungsten electrode are lower than those of arc in cylinder tungsten electrode under the similar parameters. The sheet slanting tungsten electrode can change the gap width of arc discharge to lead the current density concentrate on the location with smaller gap width, whereas the current density would also flow backward along the hypotenuse of sheet slanting tungsten electrode due to that the arc lags behind sheet slanting tungsten electrode's motion, consequently the distribution range of current density and temperature field expand in width direction of sheet slanting tungsten electrode. The local extensive distribution of current density would occur with variation of tilt angle of hypotenuse of sheet slanting tungsten electrode, and this causes the shift of cathode jet and region with higher temperature near cathode.
  • [1] Engelhard G, Habip L M, Pellkofer D, et al. Optimization of residual welding stresses in austenitic steel piping: proof testing and numerical simulation of welding and post welding processes[J]. Nuclear Engineering and Design, 2000, 198(1): 141-151.
    [2] 李渊博. 绝缘片约束TIG电弧的静电探针分析及其在超窄间隙中的加热特性[D]. 兰州: 兰州理工大学, 2013.
    [3] 李渊博, 芦 甜, 朱 亮, 等. 片状偏钨极氩弧载流区的静电探针分析[J]. 焊接学报, 2015, 36(12): 22-26. Li Yuanbo, Lu Tian, Zhu Liang, et al. Electrostatic probe analysis of current-carrying region of sheet slanting tungsten electrode arc[J]. Transactions of the China Welding Institution, 2015, 36(12): 22-26.
    [4] Tsai M C, Kou S. Heat transfer and fluid flow in welding arcs produced by sharpened and flat electrodes[J]. Int. J. Heat Mass Transfer, 1990, 33(10): 2089-2098.
    [5] Abid M, Parvez S, Nash D H. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding A 3D simulation[J]. International Journal of Pressure Vessels and Piping, 2013, 108(4): 51-60.
    [6] Ding X P, Li H, Yang L J, et al. Numerical analysis of arc characteristics in two-electrode GTAW[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9): 1867-1874.
    [7] Bini R, Monno M, Boulos M I. Numerical and experimental study of transferred arcs in argon[J]. Journal of Physics, D: Applied Physics, 2006, 39(15): 3253-3266.
    [8] Murphy A B, Tanaka M, Tashiro S, et al. A computational investigation of the effectiveness of different shielding gas mixtures for arc welding[J]. Journal of Physics, D: Applied Physics, 2009, 42(11): 1-14.
    [9] Lago F, Gonzalez J J, Freton P, et al. A numerical modeling of an electric arc and its interaction with the anode: part Ⅲ. application to the interaction of a lightning strike and an aircraft in flight[J]. Journal of Physics. D: Applied Physics, 2006, 39(5): 2294-2310.
    [10] Choo R T C, Szekely J, Westhoff R C. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: part I. modeling the welding arc[J]. Metallurgical and Materials Transactions, 1992, 23(3): 357-369.
    [11] Fanara C, Vilarinho L. Electrical characterization of atmospheric pressure arc plasmas[J]. European Physical Journal D, 2004, 28(2): 241-251.
  • 期刊类型引用(4)

    1. 郭士锐,张仕豪,吴茂敏,崔陆军,崔英浩,李晓磊,郑博. 基于热力耦合的激光熔覆316L试验与数值模拟研究. 热加工工艺. 2022(10): 74-78 . 百度学术
    2. 杨光,李雨航,周思雨,王霞,钦兰云,王向明. 基于特征区域的激光增材分区扫描热力耦合研究. 中国激光. 2021(10): 149-159 . 百度学术
    3. 严惠,王霄,梁绘昕,田宗军,谢德巧,徐国建. 选区顺序对激光直接制造TC4残余应力及变形的影响. 红外与激光工程. 2019(02): 141-148 . 百度学术
    4. 崔艳雨,谭雯丹,庞铭,胡艳娇. 激光功率变化对蠕墨铸铁相变硬化热力耦合场的影响. 热加工工艺. 2019(10): 234-237 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  484
  • HTML全文浏览量:  0
  • PDF下载量:  551
  • 被引次数: 12
出版历程
  • 收稿日期:  2016-03-26

目录

    /

    返回文章
    返回