高级检索

690镍基合金焊缝失塑裂纹产生的力学机制

朱亮,姚文选

朱亮,姚文选. 690镍基合金焊缝失塑裂纹产生的力学机制[J]. 焊接学报, 2017, 38(12): 9-13. DOI: 10.12073/j.hjxb.20160308001
引用本文: 朱亮,姚文选. 690镍基合金焊缝失塑裂纹产生的力学机制[J]. 焊接学报, 2017, 38(12): 9-13. DOI: 10.12073/j.hjxb.20160308001

690镍基合金焊缝失塑裂纹产生的力学机制

  • 摘要: 为了从力学角度理解镍基合金焊丝ERNiCrFe-7和ERNiCr-4焊缝失塑裂纹的产生机制,在Thermorestor-W型模拟试验机上进行高温拉伸试验,提出新的裂纹敏感性判据——临界应力. 并与产生裂纹的临界应变相结合来评价不同温度下材料的裂纹敏感性. 结果表明,裂纹扩展的方向与加载方向大约呈90°夹角;当变形温度低于950 ℃时,临界应力随变形温度的升高而快速下降;两种材料产生裂纹最敏感的温度区间是950~1 150 ℃;与ERNiCr-4相比,ERNiCrFe-7产生裂纹的临界应力更小. 分析认为,流变应力是产生裂纹的主要因素,当流变应力超过临界应力时,容易产生沿晶裂纹.
  • [1] 薄春雨, 杨玉亭, 丑树国, 等. 690镍基合金焊接结晶裂纹形成机理分析[J]. 焊接学报, 2007, 28(10): 69-72.Bo Chunyu, Yang Yuting, Chou Shuguo,et al. Solidification cracking mechanism of 690 nickel based alloy surfacing metal[J]. Transactions of the China Welding Institution, 2007, 28(10): 69-72.[2] 吴 伟, 陈佩寅, 张 锐. 镍基焊接材料高温失塑裂纹的研究现状及研究趋势[J]. 焊接, 2005(5): 5-8.Wu Wei, Chen Peiyin, Zhang Rui. Research status and development on ductility dip cracking of nickel-welding material[J]. Welding & Joining, 2005(5): 5-8.[3] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: part I. ductility and microstructural characterization[J]. Materials Science & Engineering A, 2004, 380(1): 259-271.[4] 侯介山, 丛培娟, 周兰章, 等. Hf对抗热腐蚀镍基高温合金微观组织和力学性能的影响[J]. 中国有色金属学报, 2011, 21(5): 945-953.Hou Jieshan, Cong Peijuan, Zhou Lanzhang,et al. Effect of HF on microstructure and mechanical behavior of hot corrosion resistant Ni-based superalloys[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 945-953.[5] Nissley N E, Lippold J C. Ductility-dip cracking susceptibility of nickel-Based weld metals: part 2——microstructural characterization[J]. Welding Journal, 2009, 88(6): 131-140.[6] 唐正柱, 陈佩寅, 吴 伟. Nb对镍基合金高温失塑裂纹敏感性的影响机理[J]. 焊接学报, 2008, 29(1): 109-112.Tang Zhengzhu, Chen Peiyin, Wu Wei. Effect of Nb on ductility drop cracking susceptibility of nickel-based alloys[J]. Transactions of the China Welding Institution, 2008, 29(1): 109-112.[7] Young G A. The mechanism of ductility dip cracking in nickel-chromium alloys[J]. Welding Journal, 2008, 2(2): 31S-43S.[8] Nishimoto K, Saida K, Okauchi H,et al. Microcracking in multipass weld metal of alloy 690. part 2——Microcracking mechanism in reheated weld metal[J]. Science and Technology of Welding and Joining, 2006, 11(4): 462-470.[9] Lippold J C, Nissley N E. Further investigations of ductility-dip cracking in high chromium, Ni-base filler metals[J]. Welding in the World Le Soudage Dans Le Monde, 2007, 51(51): 24-30.[10] Zhang Y C, Nakagawa H, Matsuda F. Weldability of Fe-36%Ni alloy (Report VI): further investigation on mechanism of reheat hot cracking in weld metal(materials, metallurgy and weldability)[J]. Transactions of Jwri, 1985, 14(2): 325-334.[11] 崔 巍, 陈静青, 陆 皓, 等. 晶界滑移对镍基合金失延开裂的影响[J]. 中国有色金属学报, 2013, 23(5): 1269-1274.Cui Wei, Chen Jingqing, Lu Hao,et al. Influence of grain boundary sliding on ductility-dip cracking of Ni-based alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(5): 1269-1274.[12] Chen J Q, Lu H, Cui W. Study on ductility dip cracking susceptibility in filler metal 82 during welding[J]. Frontiers of Materials Science, 2011, 5(2): 203-208.
  • 期刊类型引用(3)

    1. 刘刚,方江,刘福广,赵亮,李勇,杨二娟. Inconel 690焊材熔敷金属热裂倾向分析. 热加工工艺. 2022(15): 46-49 . 百度学术
    2. 李霄,马欢,李娟,史容睿,刘欣岩. 基于临界应变镍基合金堆焊层FM152热裂倾向分析. 石油工业技术监督. 2021(03): 26-29 . 百度学术
    3. 赵亮,涂善东,刘刚,刘福广,李勇,杨二娟. 蒸汽发生器手孔镍基合金堆焊层开裂分析. 压力容器. 2020(12): 42-47 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  448
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-03-07

目录

    /

    返回文章
    返回