微束等离子弧焊电弧温度场的分布特征及参数影响
Distribution characteristics and parameters effects of MPLW arc
-
摘要: 使用数值模拟的方法,应用ANSYS软件对微束等离子弧焊电弧温度场分布进行了计算,并且基于光谱检测和高速摄影技术对微束等离子弧焊电弧温度场的分布进行验证. 结果表明,电弧轴向温度在近钨棒处最大,距钨棒距离增加电弧温度减小;电弧径向温度在电弧中心处最大,随着径向距离增加,温度减小. 随着焊接电流的增大,电弧近钨棒端面处及其中心的温度增大. 钨棒端面半径减小,电弧近钨棒端面处及其径向中心温度增大. 归一化后数值模拟的电弧端面径向和轴向温度分布,分别与光谱检测和高速摄影电弧图像处理的电弧光辐射强度分布保持一致.Abstract: Temperature field distribution of the arc in microplasma arc welding was simulated by ANSYS software, and the calculation results was validated by the spectral measurement and the image processing of high-speed photography. The results showed that the axial maximum temperature of the arc in microplasma arc welding occurs in the area near the tungsten cathode, and the arc temperature decreases with the increasing of the distance from the tungsten tip. The maximum radial temperature of the arc in micro-plasma arc welding occurs at the center of the arc transverse, and the temperature decreases with the increasing of radial distance from the center of the arc transverse. With the increasing of welding current, the axial maximum temperature in the area near the tungsten tip and the radial maximum temperature at center of the arc transverse increase. With the decreasing of tungsten tip diameter, the axial maximum temperature in the area near the tungsten tip and the radial maximum temperature at center of the arc transverse increase. After normalizing, the numerical calculated radial and axial temperature distributions have high agreement with distribution results by using spectrum detection and image processing of high-speed photography, respectively.
-
-
[1] Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc[J]. Journul of Applied Physics, 1983, 54(3): 1293-1301.[2] 殷凤良, 胡绳荪, 郑振太, 等. 等离子体电弧数值模拟[J]. 焊接学报, 2006, 27(8): 51-54. Yin Fengliang, Hu Shengsun, Zheng Zhentai,etal. Numerical simulation of plasma arc[J]. Transactions of the China Welding Institution, 2006, 27(8): 51-54.[3] 雷玉成, 李彩辉, 郁雯霞, 等. 氮氩气体保护TIG焊接电弧数值分析[J]. 焊接学报, 2006, 27(11): 25-28. Lei Yucheng, Li Caihui, Yu Weixia,etal. Numerical analysis of nitrogen and argon gas shielded TIG welding arc[J]. Transactions of the China Welding Institution, 2006, 27(11): 25-28.[4] Thornton M. Spectroscopic determination of temperature distribution for a TIG arc[J]. Physics, 1993, 26: 14-32.[5] Choo T C, Szekeiy J, Westhoff R C. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: modeling the welding arc[J]. Metal Surgical Transactions, 1992, 23B(6): 357-369.[6] 何建萍. 一种微束等离子弧三维动态光谱检测系统: 中国, CN101738257A[P]. 2010-06-16.[7] 邵 华, 朱丹平, 吴毅雄. 电弧等离子体温度场中Abel逆变换的数值算法分析[J]. 计算物理, 2005, 22(5): 431-436. Shao Hua, Zhu Danping, Wu Yixiong. Numerical methods for the abel inversion of temperature field in an arc plasma[J]. Chinese Journal of Computational Physics, 2005, 22(5): 431-436.[8] 邵 华, 朱丹平, 吴毅雄. Abel逆变换的数值算法[J]. 上海交通大学学报, 2005, 39(8): 1375-1388. Shao Hua, Zhu Danping, Wu Yixiong. Numerical methods for the Abel inversion[J]. Journal of Shanghai Jiaotong University[J]. 2005,39(8): 1375-1388.[9] 林杨胜蓝. 脉冲微束等离子弧三维空间点的能量密度分布的研究[D]. 上海: 上海工程技术大学, 2015.
计量
- 文章访问数: 911
- HTML全文浏览量: 15
- PDF下载量: 538