高级检索

电化学充氢条件下管线钢焊接接头对氢的吸收能力分析

贾清松1,吕小青1,2,韩永典1,2,徐连勇1,2,荆洪阳1,2,尚进1

贾清松1,吕小青1,2,韩永典1,2,徐连勇1,2,荆洪阳1,2,尚进1. 电化学充氢条件下管线钢焊接接头对氢的吸收能力分析[J]. 焊接学报, 2017, 38(9): 111-114. DOI: 10.12073/j.hjxb.20150813001
引用本文: 贾清松1,吕小青1,2,韩永典1,2,徐连勇1,2,荆洪阳1,2,尚进1. 电化学充氢条件下管线钢焊接接头对氢的吸收能力分析[J]. 焊接学报, 2017, 38(9): 111-114. DOI: 10.12073/j.hjxb.20150813001

电化学充氢条件下管线钢焊接接头对氢的吸收能力分析

  • 摘要: 采用电化学的方法研究X65管线钢母材及其高频电阻焊(high-frequency welding-HFW)焊缝对电化学充氢的吸收能力. 结果表明,随着充氢时间的增加,母材和焊缝中的扩散氢的含量有着一样的变化趋势,先升高然后降低达到稳定值,但是焊缝中的扩散氢含量最高值4.11×10-5mol/cm3、稳定值2.96×10-5mol/cm3均高于母材的4.02×10-5mol/cm3和2.78×10-5mol/cm3,所以焊缝对电化学充氢有着更高的敏感性. 这是因为材料的晶粒尺寸和晶界面积对氢在其中的扩散吸收有着极其重要的作用,同时,相比于X65管线钢母材,焊缝中珠光体与铁素体的显微硬度差值更大,这为氢提供了有效的扩散路径.
  • [1] 姚春发, 刘 伟, 李树森, 等. 管线钢氢致裂纹影响因素研究进展[J]. 上海金属, 2014, 36(5): 54-58.Yao Chunfa, Liu Wei, Li Shusen,etal. Research progress of influencing factors of hydrogen induced cracking for pipeline steel[J]. Shanghai Metals, 2014, 36(5): 54-58.[2] 叶兴远, 吴赛红, 宋祥伟, 等. 管线钢的硫化物应力腐蚀开裂研究[J]. 煤气与热力, 2013, 33(2): 33-37.Ye Xingyuan, Wu Saihong, Song Xiangwei,etal. Study on sulfide stress corrosion cracking of pipeline steel[J]. Gas & Heat, 2013, 33(2): 33-37.[3] 谭长瑛, 张显辉, 陈佩寅, 等. 焊接氢致裂纹的模拟与预测[J]. 焊接学报, 2002, 23(5): 1-4.Tan Changying, Zhang Xianhui, Chen Peiyin,etal. Simulation and prediction of hydrogen induced cracking during welding[J]. Transactions of the China Welding Institution, 2002, 23(5): 1-4.[4] 李云涛, 杜则裕, 陶勇寅, 等. 国产X70管线钢及其焊缝的氢致裂纹[J]. 焊接学报, 2004, 25(5): 104-108.Li Yuntao, Du Zeyu, Tao Yongyin,etal. The domestic X70 pipeline steel and its weld hydrogen induced cracking[J]. Transactions of the China Welding Institution, 2004, 25(5): 104-108.[5] Sastri V S, McDonnell D B. Analysis of surface hydrogen in high-strength steels[J]. Canadian Metallurgical Quarterly, 1995, 34(1): 37-41.[6] Lunarska E, Ososkov Y, Jagodzinsky Y. Correlation between critical hydrogen concentration and hydrogen damage of pipeline steel[J]. International Journal of Hydrogen Energy, 1997, 22(2): 279-284.[7] Dong C F, Li X G, Liu Z Y,etal. Hydrogen-induced cracking and healing behaviour of X70 steel[J]. Journal of Alloys and Compounds, 2009, 484(1): 966-972.[8] Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium[C]//Proceedings of the Royal Society of London, 1962, 270(1340): 90-102.[9] Capelle J, Dmytrakh I, Pluvinage G. Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength[J]. Corrosion Science, 2010, 52(5): 1554-1559.[10] 江崇华, 周昭伟. 夹杂物与氢对15MnVNq(C,B)钢对接接头冷弯性能的影响[J]. 焊接学报, 1993, 14(2): 104-110.Jiang Chonghua, Zhou Zhaowei, Effect ofinclusions and hydrogen on cold bending property of 15MnVNq(CB) steel butt welded joint[J]. Transactions of the China Welding Institution,1993, 14(2): 104-110.[11] Chatzidouros E V, Papazoglou V J, Tsiourva T E,etal. Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12626-12643.
  • 期刊类型引用(2)

    1. 魏世同,孙健,刘景武,陆善平. V含量及回火工艺对高强钢TIG焊熔敷金属组织性能的影响. 焊接学报. 2020(11): 1-6+97 . 本站查看
    2. 武凤娟,程丙贵,刘东升,曲锦波. TMCP高强韧F460厚板及焊接接头的组织和性能. 上海金属. 2018(05): 21-27 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  340
  • HTML全文浏览量:  11
  • PDF下载量:  91
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-08-12

目录

    /

    返回文章
    返回