高级检索

焊接热输入对Q890高强钢热影响区裂纹扩展的影响

崔冰1,2,彭云2,彭梦都2,江卓俊2

崔冰1,2,彭云2,彭梦都2,江卓俊2. 焊接热输入对Q890高强钢热影响区裂纹扩展的影响[J]. 焊接学报, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003
引用本文: 崔冰1,2,彭云2,彭梦都2,江卓俊2. 焊接热输入对Q890高强钢热影响区裂纹扩展的影响[J]. 焊接学报, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003
CUI Bing1,2, PENG Yun2, PENG Mengdu2, JIANG Zhuojun2. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003
Citation: CUI Bing1,2, PENG Yun2, PENG Mengdu2, JIANG Zhuojun2. Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 63-67. DOI: 10.12073/j.hjxb.20150617003

焊接热输入对Q890高强钢热影响区裂纹扩展的影响

Effect of heat input on crack growth behavior of CGHAZ of Q890 high-performance steel

  • 摘要: 采用Gleeble1500热模拟试验机,研究不同热输入对Q890高强钢焊接热影响区粗晶区的微观组织和韧性影响规律. 结果表明,随着热输入的增加,粗晶区的微观组织表现出从马氏体组织向马氏体、贝氏体的混合组织,再向贝氏体、粒状贝氏体的混合组织的转变. 当热输入为19.7 kJ/cm时,冲击吸收功最高为83 J,主要原因是由于先相贝氏体分割后相马氏体,大角度晶界密度最大,改善了冲击韧性. 当热输入较高时,粗晶区脆化的原因是由于M-A组元呈链状分布,造成局部应力集中,成为裂纹起裂和扩展的主要通道.
    Abstract: The present study focuses on the relationship between microstructure and toughness property in the coarse grain heat affected zone (CGHAZ) of Q890 high-performance steel. The result show that, with the heat input increasing microstructure changes from martensite to martensite and bainitic ferrite and then to bainitic ferrite and granular bainite. The Charpy impact test results show that impact energy as high as 83 J attained in the CGHAZ with 19.7 kJ/cm, which related to the contribution of prephase bainitic ferrite segment martensite and leading to maximum density of high angle boundaries, which can improve toughness. When the heat input is 34.1 and 44 kJ/cm, the impact energy reasons for the decline is due to catenulate distribution of embrittlement M-A constituents and local stress concentration, resulting in rapid crack initiation and propagation via the massive martensite–austenite (M-A) constituent.
  • [1] 张元杰. TMCP890钢焊接热影响区组织与性能研究[D]. 昆明: 昆明理工大学, 2014.[2] 杨 莉. 焊接线能量对WEI-TEN80A钢焊接接头力学性能的影响[J]. 热加工工艺, 2005(3): 46-47. Yang Li. Influence of welding line energy on mechanical performance of WEI-TEN80A steel’s welding joints[J]. Hot Working Technology, 2005(3): 46-47.[3] 吴昌忠, 陈怀宁, 范闽宁, 等. 1 000 MPa级高强钢焊接热影响区组织和韧性[J]. 焊接学报, 2011, 32(5): 97-100. Wu Changzhong, Chen Huaining, Fan Minning,etal. Microstructure and toughness of HAZ in 1 000 MPa grade high strength steel joint[J]. Transactions of the China Institution, 2011, 32(5): 97-100.[4] Bing C, Yun P, Lin Z,etal. Effect of heat input on microstructure and toughness of coarse grained heat affected zone of Q890 steel[J]. ISIJ International, 2016, 56(1): 132-139.[5] 衣海龙, 麻庆申, 杜林秀, 等. 待温厚度与终轧温度对X80管线钢组织中马氏体/奥氏体岛的影响[J]. 机械工程学报, 2009, 33(6): 37-39. Yi Hailong, Ma Qingshen, Du Linxiu,etal. Influences of temperature holding thickness and finish rolling temperature on martensite/austenite islands in X80 pipeline steel[J]. Materials for Mechanical Engineering, 2009, 33(6): 37 -39.[6] Mstsuda F. Effect of M-A constituent on fracture behavior of 780 and 980MPa class HSLA steels subjected to weld HAZ thermal cycle[J]. Transactions of JWRI, 1994, 23(2): 231-238.[7] 赵 琳, 张旭东, 陈武柱. 800 MPa级低合金钢焊缝热影响区韧性的研究[J]. 金属学报, 2005, 41(4): 392-396. Zhao Lin, Zhang Xudong, Chen Wuzhu. Toughness of heat-affected zone of 800 MPa grade low alloy steel[J]. Acta Metallurgica Sinica, 2005, 41(4): 392-396.[8] 安同邦, 单际国, 魏金山, 等. 热输入对1 000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42-49. An Tongbang, Shan Jiguo, Wei Jinshan,etal. Effect of heat input on microstructure and performance of welded joint in 1 000 MPa grade steel for construction machinery[J]. Journal of Mechanical Engineering, 2014, 50(22): 42-49.[9] 安同邦, 田志凌, 单际国, 等. 后热温度对1 000 MPa级高强钢焊缝组织与性能的影响[J]. 机械工程学报, 2015, 51(4): 40-46. An Tongbang, Tian Zhiling, Shan Jiguo,etal. Effect of the temperature of post weld heat treatment on microstructure and performance of weld metal for 1 000 MPa grade high strength steel[J]. Journal of Mechanical Engineering, 2015, 51(4): 40-46.[10] Thompson A W, Knott J F. Micromechanisms of brittle fracture[J]. Metallurgical Transactions A, 1993, 24A(3): 523-534.[11] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part Ⅰ. fractographic evidence[J]. Metallurgical and Materials Thansactions A, 1994, 25(3): 563-573.[12] 王爱华, 彭 云, 肖红军, 等. 690 MPa级HSLA钢焊缝金属的显微组织与冲击韧性[J]. 焊接学报, 2013, 34(4): 7-10. Wang Aihua, Peng Yun, Xiao Hongjun,etal. Microstructure and impact property of 690 MPa level HSLA steel weld[J]. Transactions of the China Institution, 2013, 34(4): 7-10.[13] 缪成亮, 尚成嘉, 王学敏, 等. 高NbX80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Liao Chengliang, Shang Chengjia, Wang Xuemin,etal. Micro-structure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546.[14] Morito S, Saito H, Ogawa T,etal. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ Internaitonal, 2005, 45(1): 91-94.[15] Jun H, Lin X D, Jian J W,etal. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel[J]. Materials Science & Engineering A, 2014, 590: 323-328.
  • 期刊类型引用(6)

    1. 袁耀,王金凤,蔡笑宇,苏文超,郭亿. Q960E超高强钢焊接接头组织和性能研究. 精密成形工程. 2023(05): 97-104 . 百度学术
    2. 王艳杰,赵琳,彭云,曹洋. 中锰汽车钢焊接热影响区组织与韧性. 机械工程学报. 2022(24): 84-93 . 百度学术
    3. 杨阳. 矿山支架用高强钢焊接工艺研究. 焊接技术. 2021(08): 40-43+106 . 百度学术
    4. 李金梅,杨兆庆,梁小武,张建晓,雷万庆,曹睿. 热输入对09MnNiDR钢焊接热影响区粗晶区组织和韧性的影响. 机械工程材料. 2021(12): 72-77 . 百度学术
    5. 张岩. 高强钢在轻量化结构设计中的应用及其焊接. 电焊机. 2021(12): 34-40+128 . 百度学术
    6. 曹睿,杨兆庆,李金梅,雷万庆,张建晓,陈剑虹. 粗晶热影响区比例对09MnNiDR焊接接头冲击韧性的影响. 焊接学报. 2020(05): 7-13+97 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  886
  • HTML全文浏览量:  16
  • PDF下载量:  711
  • 被引次数: 9
出版历程
  • 收稿日期:  2015-06-16

目录

    /

    返回文章
    返回