[1] |
张元杰. TMCP890钢焊接热影响区组织与性能研究[D]. 昆明: 昆明理工大学, 2014.[2] 杨 莉. 焊接线能量对WEI-TEN80A钢焊接接头力学性能的影响[J]. 热加工工艺, 2005(3): 46-47. Yang Li. Influence of welding line energy on mechanical performance of WEI-TEN80A steel’s welding joints[J]. Hot Working Technology, 2005(3): 46-47.[3] 吴昌忠, 陈怀宁, 范闽宁, 等. 1 000 MPa级高强钢焊接热影响区组织和韧性[J]. 焊接学报, 2011, 32(5): 97-100. Wu Changzhong, Chen Huaining, Fan Minning,etal. Microstructure and toughness of HAZ in 1 000 MPa grade high strength steel joint[J]. Transactions of the China Institution, 2011, 32(5): 97-100.[4] Bing C, Yun P, Lin Z,etal. Effect of heat input on microstructure and toughness of coarse grained heat affected zone of Q890 steel[J]. ISIJ International, 2016, 56(1): 132-139.[5] 衣海龙, 麻庆申, 杜林秀, 等. 待温厚度与终轧温度对X80管线钢组织中马氏体/奥氏体岛的影响[J]. 机械工程学报, 2009, 33(6): 37-39. Yi Hailong, Ma Qingshen, Du Linxiu,etal. Influences of temperature holding thickness and finish rolling temperature on martensite/austenite islands in X80 pipeline steel[J]. Materials for Mechanical Engineering, 2009, 33(6): 37 -39.[6] Mstsuda F. Effect of M-A constituent on fracture behavior of 780 and 980MPa class HSLA steels subjected to weld HAZ thermal cycle[J]. Transactions of JWRI, 1994, 23(2): 231-238.[7] 赵 琳, 张旭东, 陈武柱. 800 MPa级低合金钢焊缝热影响区韧性的研究[J]. 金属学报, 2005, 41(4): 392-396. Zhao Lin, Zhang Xudong, Chen Wuzhu. Toughness of heat-affected zone of 800 MPa grade low alloy steel[J]. Acta Metallurgica Sinica, 2005, 41(4): 392-396.[8] 安同邦, 单际国, 魏金山, 等. 热输入对1 000 MPa级工程机械用钢接头组织性能的影响[J]. 机械工程学报, 2014, 50(22): 42-49. An Tongbang, Shan Jiguo, Wei Jinshan,etal. Effect of heat input on microstructure and performance of welded joint in 1 000 MPa grade steel for construction machinery[J]. Journal of Mechanical Engineering, 2014, 50(22): 42-49.[9] 安同邦, 田志凌, 单际国, 等. 后热温度对1 000 MPa级高强钢焊缝组织与性能的影响[J]. 机械工程学报, 2015, 51(4): 40-46. An Tongbang, Tian Zhiling, Shan Jiguo,etal. Effect of the temperature of post weld heat treatment on microstructure and performance of weld metal for 1 000 MPa grade high strength steel[J]. Journal of Mechanical Engineering, 2015, 51(4): 40-46.[10] Thompson A W, Knott J F. Micromechanisms of brittle fracture[J]. Metallurgical Transactions A, 1993, 24A(3): 523-534.[11] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part Ⅰ. fractographic evidence[J]. Metallurgical and Materials Thansactions A, 1994, 25(3): 563-573.[12] 王爱华, 彭 云, 肖红军, 等. 690 MPa级HSLA钢焊缝金属的显微组织与冲击韧性[J]. 焊接学报, 2013, 34(4): 7-10. Wang Aihua, Peng Yun, Xiao Hongjun,etal. Microstructure and impact property of 690 MPa level HSLA steel weld[J]. Transactions of the China Institution, 2013, 34(4): 7-10.[13] 缪成亮, 尚成嘉, 王学敏, 等. 高NbX80管线钢焊接热影响区显微组织与韧性[J]. 金属学报, 2010, 46(5): 541-546. Liao Chengliang, Shang Chengjia, Wang Xuemin,etal. Micro-structure and toughness of HAZ in X80 pipeline steel with high Nb content[J]. Acta Metallurgica Sinica, 2010, 46(5): 541-546.[14] Morito S, Saito H, Ogawa T,etal. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ Internaitonal, 2005, 45(1): 91-94.[15] Jun H, Lin X D, Jian J W,etal. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel[J]. Materials Science & Engineering A, 2014, 590: 323-328.
|