[1] 黄勇, 王新鑫, 瞿怀宇, 等. 工艺参数对耦合AA-TIG焊电弧阳极电流密度的影响[J]. 焊接学报, 2014, 35(2): 5 − 9.

Huang Yong, Wang Xinxin, Qu huaiyu, et al. Effects of arc parameters on arc anode current density of coupling AA-TIG arc[J]. Transactions of the China Welding Institution, 2014, 35(2): 5 − 9.
[2] 张栋, 陈茂爱, 武传松, 等. 高速CMT焊送丝速度和焊接电流波形参数的优化[J]. 焊接学报, 2018, 39(1): 119 − 122.

Zhang Dong, Chen Maoai, Wu Chuansong, et al. Optimization of waveform parameters for high speed CMT welding of steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 119 − 122.
[3] Li A, Liu X, Yu B. Influence mechanism of processing parameters on size uniformity of 7075 aluminum alloy single tracks during liquid metal flow rapid cooling additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 59: 258 − 265. doi:  10.1016/j.jmapro.2020.09.074
[4] Wang L, Chen J, Zhang S, et al. Numerical simulation of coupled arc-droplet-weld pool behaviors during compound magnetic field assisted gas metal arc welding[J]. AIP Advances, 2021, 11(6): 65221. doi:  10.1063/5.0049461
[5] 丁雪萍, 李桓. 焊接电流影响GMAW双丝焊电弧等离子体的数值模拟研究[J]. 机械工程学报, 2016, 52(16): 71 − 76.

Ding Xueping, Li Huan. Numerical analysis for effect of welding current on arc plasma in double-wire GMAW[J]. Journal of Mechanical Engineering, 2016, 52(16): 71 − 76.
[6] 郭力玮, 黄继强, 冯音琦, 等. 环境压力对GMAW电弧能量耗散的影响[J]. 焊接学报, 2022, 43(2): 61 − 66. doi:  10.12073/j.hjxb.20210609003

Guo Liwei, Huang Jiqiang, Feng Yinqi, et al. Effect of ambient pressure on energy dissipation of GMAW arc[J]. Transactions of the China Welding Institution, 2022, 43(2): 61 − 66. doi:  10.12073/j.hjxb.20210609003
[7] Wang X, Fan D, Huang J, et al. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D:Applied Physics, 2014, 47(27): 275002.
[8] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201 − 225. doi:  10.1016/0021-9991(81)90145-5
[9] Ni M, Qin X, Hu Z, et al. Forming characteristics and control method of weld bead for GMAW on curved surface[J]. Advanced Manufacturing Technology, 2021, 119(3-4): 1883 − 1908.
[10] Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504 − 516. doi:  10.1016/j.ijheatmasstransfer.2018.03.085
[11] Hu Z, Hua L, Qin X, et al. Molten pool behaviors and forming appearance of robotic GMAW on complex surface with various welding positions[J]. Journal of Manufacturing Processes, 2021, 64: 1359 − 1376. doi:  10.1016/j.jmapro.2021.02.061
[12] 周祥曼, 王礴允, 袁有录, 等. 焊接速度对电弧增材熔池流动及焊道形貌影响的数值模拟研究[J]. 机械工程学报, 2022, 58(10): 103 − 111.

Zhou Xiangman, Wang Boyun, Yuan Youlu, et al. Numerical Simulation Study of the Effects of Travel Speed on the Molten Pool Flow and Weld Bead Morphology of WAAM[J]. Journal of Mechanical Engineering, 2022, 58(10): 103 − 111.
[13] Tanaka M, Terasaki H, Ushio M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2002, 33(7): 2043 − 2052. doi:  10.1007/s11661-002-0036-2
[14] 周祥曼, 刘练, 陈永清, 等. 外加变位磁场作用GTAW焊接电弧的数值模拟[J]. 三峡大学学报(自然科学版), 2021, 43(5): 101 − 106. doi:  10.13393/j.cnki.issn.1672-948x.2021.05.017

Zhou Xiangman, Liu Lian, Chen Yongqing, et al. Numerical simulation of GTAW welding arc under the external static magnetic field of changing position[J]. Journal of China Three Gorges University (Natural Sciences), 2021, 43(5): 101 − 106. doi:  10.13393/j.cnki.issn.1672-948x.2021.05.017
[15] Ji F, Qin X, Hu Z, et al. Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105789. doi:  10.1016/j.icheatmasstransfer.2021.105789
[16] Cho D W, Na S J, Cho M H, et al. A study on V-groove GMAW for various welding positions[J]. Journal of Materials Processing Technology, 2013, 213(9): 1640 − 1652. doi:  10.1016/j.jmatprotec.2013.02.015