November 2013

热时效过程中微米级 SnAgCu 焊点的界面金属间 化合物形成及演变

田 野1,2, 吴懿平2, 安 兵2, 龙旦风3

(1. 河南工业大学 机电工程学院,郑州 450000; 2. 华中科技大学 材料科学与工程学院,武汉 430074; 3. 清华大学 仪器与机械学系,北京 10084)

摘 要: 研究微米级倒装组装焊点在 $150~^{\circ}$ C热时效过程中界面金属间化合物(intermetalic compound , IMC) 的形成及演化. 结果表明 , 在热时效 300~h 后 , 受铜焊盘界面扩散过来的 Cu 原子影响 , 镍焊盘界面(Ni , Cu) $_3$ Sn $_4$ 全部转化成(Cu ,Ni) $_6$ Sn $_5$; 在铜焊盘界面 热时效至 100~h 后 .形成一层薄的 Cu $_3$ Sn ,在随后的热时效过程中 ,由于 Ni 原子对Cu $_3$ Sn 生长的抑制作用 ,Cu $_3$ Sn 几乎没有生长. 此外在时效 100~h 内 ,两侧界面(Cu ,Ni) $_6$ Sn $_5$ 生长速率增加较快 但随着时效时间的增加逐渐减慢. 两侧界面(Cu ,Ni) $_6$ Sn $_5$ 顶端形貌随着时效时间的增加逐渐变平.

关键词: 无铅焊料; 金属间化合物; 倒装芯片封装; 界面反应; 热时效

中图分类号: TG454 文献标识码: A 文章编号: 0253 - 360X(2013)11 - 0101 - 04

田野

0 序 言

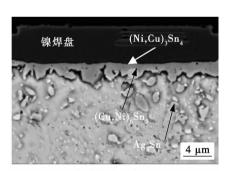
为了满足电子产品微型化的市场需要,以焊点 为互连方式的倒装芯片组装向着微小化方向发展, 这促使焊点的间距和互连高度连续减小. 这种变化 一方面缩短了界面原子扩散到另一侧界面的距离, 加剧了界面原子的交互作用对界面 IMC 的影响; 另 一方面增加了焊点在热起伏过程中所承受的应力, 促进界面原子扩散,进而影响界面 IMC 的形成和演 变. 在互连回流工艺后,焊料与焊盘间的界面上形 成 IMC 适当厚度的 IMC 对焊点起到冶金键合的作 用 然而由于 IMC 的脆性特性 ,且与基板和焊料间 存在热失配,因此 IMC 生长过厚会弱化焊接界面, 易在界面处形成裂纹[1]. 在倒装芯片组装中 ,焊点 两侧焊盘金属化材料通常不同,芯片一侧常为 Ni/ Au 金属化 基板一侧常为铜,并在铜上覆盖一层有 机保护膜(organic solderability preservatives OSP) 在 互连回流过程中 两侧原子迅速扩散到另一侧 参与 另外一侧界面反应,这一交互作用甚至在固态焊料 热时效过程中也能发生 其中 Ni 原子在焊料中的存 在 影响铜焊盘界面上 IMC 的形成和生长,例如促 进(Cu,Ni)₆Sn₅ 的生长和抑制 Cu₃Sn 的形成,Cu 原

子对镍焊盘界面 IMC 形成和演化也有着相似的影响^[2].

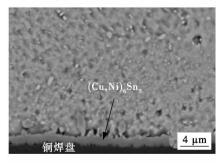
目前存在的数篇文献报道了界面原子的交互扩散作用对焊点界面 IMC 演化的影响^[3] ,但主要集中在大尺寸焊点 ,一般互连高度大于 100 µm ,对 100 µm 以下研究较少. 此外存在的研究主要应用金属棒或金属片作为模拟基板或芯片 ,研究单焊点双界面 IMC 的生长情况^[4]. 而在实际封装体中存在着大量焊点 ,且基板和芯片线膨胀系数相差较大 ,因此焊点在回流冷却过程中或可靠性试验中 ,存在由热效应所引发的应力效应^[5] ,运用模拟的焊接结构对热应力效应没有充分的考虑. 文中采用焊点四周环绕型分布的细间距硅芯片和对应的双马来酰亚胺三嗪(bismaleimide triazine ,BT) 基板组装 ,研究热时效过程中焊点两侧界面 IMC 的生长、形成及演变. 特别关注在时效过程中 ,焊盘界面原子交互作用对界面 IMC 形成和演化的影响.

1 试验过程

试验采用焊点周边排列型的硅芯片和 BT 基板 互连完成倒装芯片组装 芯片的尺寸为 10 mm × 10 mm ,共包含 376 个凸点 ,凸点间距 100 μm ,高度约 为 45 μm ,焊盘的直径约为 45 μm ,焊盘金属化层为


Ni(P) /Au. 与芯片对应的 BT 基板 ,其尺寸为 15 mm × 15 mm , 焊盘组成为 Cu/OSP. 凸点焊料成分为 Sn-3.0Ag-0.5Cu (质量分数 ,%) (SAC305).

利用倒装芯片键合机完成芯片和基板间的互连组装 焊接条件为焊料在熔化温度以上保持 60 s 混高温度约为 240 C. 选用 Hysol 4531 填充胶在 160 C 固化 6 min 完成封装填充. 对组装后的芯片依次进行 X 光、超声以及电阻检测 ,确定出组装优良的芯片. 选出一批组装优良的芯片进行热时效试验 ,温度设置为 150 C ,在 0 ,100 ,300 ,500 及 650 h 的每个时间点上 ,各取出两片芯片 ,采用环氧树脂冷镶嵌 ,通过采用不同型号砂纸磨制和 Al_2O_3 抛光液抛光完成金相样品制备. 为了清楚的观察到 IMC 的二维横截面微观组织 ,选用 5% HCl-95% C₂H₅OH 腐蚀溶液 ,腐蚀试样 6 s. 采用带有能量散射 X 射线能谱仪的扫描电镜 ,对焊点 IMC 进行了形貌、结构观察. 利用数字图形处理软件测量 SEM 图片上 IMC的面积 ,再通过计算获得 IMC 的平均厚度.


2 试验结果及讨论

2.1 在互连回流后界面 IMC 微观组织的变化

图 1 为封装互连后焊点两侧焊盘界面 IMC 的 横截面形貌: 如图 1 a 所示, 在芯片侧镍焊盘界面

(a) 芯片侧镍焊盘界面

(b) 基板侧铜焊盘界面

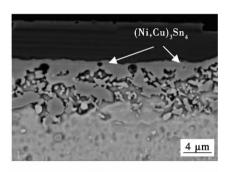
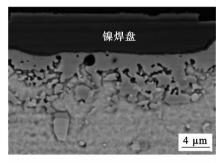
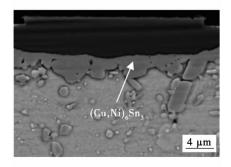

图 1 封装互连后焊点两侧焊盘界面 IMC 的横截面微观组织形貌

Fig. 1 Cross-section interfacial IMC microstructure image on both pad sides after reflow


上 形成了 3 种 IMC 2 EDS 成分确定 ,紧邻镍焊盘界面的黑色层状 IMC 为 2 Ni3P ,紧邻焊料界面波浪状的 IMC 为 2 Cu 2 Ni 3 Sn5 ,在这两种 IMC 层间较薄的一层不均匀 IMC 为 2 Ni 2 Cu 2 Ni 3 Sn4 如图 1 b 所示 ,基板侧铜焊盘界面上形成了一层针状 IMC ,通过 EDS分析确定 ,这层 IMC 为 2 Cu 2 Ni 2 Sn4 和铜焊盘间界面上形成的典型 2 Cu 4 Sn4 没有被观察到 ,主要原因是在互连回流过程中,一定量的 Ni 原子从镍焊盘界面扩散到铜焊盘界面,据文献 [6] 报道 Ni 原子能够抑制 2 Cu 4 Sn 的生长.

2.2 在热时效过程中界面 IMC 的生长和演化

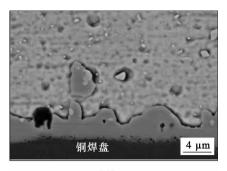

图 2 为 150 $^{\circ}$ C 热时效过程中镍焊盘界面 IMC 的微观组织形貌. 如图 2a 所示 在时效 100 h 后 镍焊盘界面(Ni ,Cu) $_3$ Sn $_4$ 的厚度进一步减小 ,当时效至 300 h 后(图 2b) 在(Cu ,Ni) $_6$ Sn $_5$ 和 Ni $_3$ P 间的界

(a) 时效 100 h

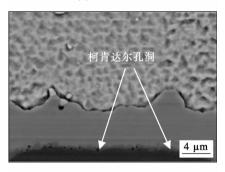
(b) 时效 300 h

(c) 时效 650 h

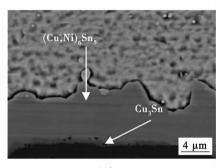
图 2 150 ℃热时效过程中不同时间条件下芯片侧镍焊盘 界面 IMC 的微观组织形貌


Fig. 2 Cross-section microstructure of die side IMC layers after different thermal aging time at 150 °C

面上已经观察不到(Ni ,Cu) $_3$ Sn $_4$. 文献 [7] 中报道当(Cu ,Ni) $_3$ Sn $_4$ 中 Cu 原子的含量超过 8.5% (原子分数) 时 ,(Cu ,Ni) $_3$ Sn $_4$ 逐渐转化成(Cu ,Ni) $_6$ Sn $_5$,在研究中界面(Ni ,Cu) $_3$ Sn $_4$ 由形成到消失的整个过程说明了在热时效过程中一定量的 Cu 原子从铜焊盘界面上扩散到镍焊盘界面上 ,促进了(Cu ,Ni) $_3$ Sn $_4$ 转化成(Cu ,Ni) $_6$ Sn $_5$. 此外焊点短的互连高度 ,缩短了 Cu 原子扩散到镍焊盘即面的扩散距离 ,加速了Cu 原子扩散到镍焊盘的界面上 ,进而加快了(Cu ,Ni) $_3$ Sn $_4$ 转化成(Cu ,Ni) $_6$ Sn $_5$.


图 3 为 150 ℃热时效过程中铜焊盘界面 IMC 的微观组织形貌. 如图 3a 所示 在时效 100 h 后 ,一 薄层 IMC 在铜焊盘界面上形成,通过 EDS 分析确 定 此层 IMC 为 Cu₃Sn. 在 150 [℃] 热时效过程中, Ni 原子在焊料中的扩散系数和扩散速率都很低,如 在 160 ℃时 ,Ni 原子在扩散系数 5.4 × 10 -9 cm²/s , 饱和溶解度约为 0.005% (原子比)[8] ,同时镍焊盘 界面 Ni₃P 和(Cu Ni)₆Sn₅ 对 Ni 原子扩散到焊料中 起到了阻碍作用。因此在热时效过程中从镍焊盘界 面扩散到铜焊盘界面的 Ni 原子总量减少,减弱了 Ni 原子对 Cu,Sn 形成的阻碍作用,导致 Cu,Sn 形 成. 在随后的热时效过程中,Cu₃Sn 几乎没有生长 (图 3b ,c). 这一结果与文献 [9]报道不一致,报道 中 Cu₃Sn 随着热时效的时间增加而增长. 与文献报 道不一致的原因为焊点的互连高度存在明显差异, 在文献报道中焊点的互连高度为 500 μm 左右,而 在研究中焊点的互连高度约为 40 μm 左右. 根据 Fick 扩散第一定律可以简单估算界面 Ni 原子从镍 焊盘界面扩散到铜焊盘界面所需要的时间. 当焊点 的互连高度从 40 μm 上升到 500 μm, Ni 原子从镍 焊盘界面扩散到铜焊盘界面将增加近 100 倍左右的 时间 在研究中 Ni 原子仅需要不到 1 h 就能从镍焊 盘界面扩散到铜焊盘界面. 此外在热时效过程中, 焊点承受着由热效应而产生的应力和应变 特别是 边角焊点 ,而应力和应变能够促进界面原子的扩散 , 进而影响着 IMC 的生长和演化.

在时效到 100~h 后,柯肯达尔孔洞在 Cu_3Sn 界面上出现,但直至热时效至 650~h 后数量都没有增长。据报道随着 Cu_3Sn 形成的柯肯达尔孔洞可能造成焊点的可靠性问题,因为过多的孔洞会相互连接而形成脆性裂纹。然而在细间距的互连焊点中,由于从镍焊盘界面扩散到铜焊盘界面的 Ni 原子对 Cu_3Sn 生长的抑制作用,这一可靠性问题可能不会出现。


一些颗粒状的 Ag_3Sn 被观察到埋入在铜焊盘界面上的(Cu ,Ni) $_6Sn_5$ 中 ,随着时效时间的增加 ,

(a) 时效 100 h

(b) 时效 300 h

(c) 时效 650 h

图 3 在 150 ℃热时效过程中不同时间条件下基板侧铜焊 盘界面上 IMC 的微观组织形貌

Fig. 3 Cross-section microstructure of substrate side IMC layers after different thermal aging time at 150 °C

 Ag_3Sn 颗粒粗化明显. 随着时效时间的增长 (Cu , Ni) $_6Sn_5$ 的外部形貌由针状和波浪状逐渐向层状转化. 从动力学角度分析 与 IMC 的层状相比 ,贝壳状或针状与焊料具有更大的接触面积 ,因此贝壳状 ,波 浪状等不规则形状 IMC 具有更高的界面能. 在焊接过程中 ,由于化合物形成能的增益将抵消高的界面能以至于 IMC 形成扇贝状或针状. 然而在固态反应中 (Cu ,Ni) $_6Sn_5$ 形成和生长变缓使得形成能增益减小 ,无法抵消扇贝状或针状等高界面能形状. 为了减小高的界面能 ,因此 IMC 的外部形貌由扇贝状 ,针状等不规则形貌向层状转变 I^{100} .

图 4 为两侧焊盘界面主要 $IMC(Cu,Ni)_6Sn_5$ 厚度随时效时间变化曲线. 由图 4 可见,随着时效时间的增加,焊盘两侧界面 $(Cu,Ni)_6Sn_5$ 的厚度呈逐渐增加趋势. 对于 $(Cu,Ni)_6Sn_5$ 的生长速率,在热

时效 100 h 前增加比较快,在随后的热时效过程中增加逐渐变缓,这一变化趋势对镍焊盘界面(Cu, Ni) $_6\text{Sn}_5$ 表现非常明显. 其主要原因为在热时效 100 h 后,铜焊盘界面上形成了较厚的(Cu,Ni) $_6\text{Sn}_5$,能够有效的阻碍铜焊盘界面的 Cu 原子通过扩散进入到焊料中,因此限制了新(Cu,Ni) $_6\text{Sn}_5$ 的生长. 此外通过扩散穿过(Cu,Ni) $_6\text{Sn}_5$ 的 Cu 原子优先与锡和镍反应在铜焊盘侧(Cu,Ni) $_6\text{Sn}_5$,只有一少部分穿过固态焊点扩散到镍焊盘的界面上形成新的(Cu,Ni) $_6\text{Sn}_5$,只有一少部分穿过固态焊点扩散到镍焊盘的界面上形成新的(Cu,Ni) $_6\text{Sn}_5$,因此在镍焊盘界面上(Cu,Ni) $_6\text{Sn}_5$ 厚度增长比铜焊盘界面慢,其生长速率下降也更明显.

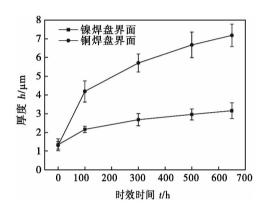


图 4 两侧焊盘界面上(Cu ,Ni) ₆ Sn₅ 厚度随时效时间变化 曲线

Fig. 4 Interfacial (Cu ,Ni) ₆Sn₅ thickness changing curve as aging time increasing

3 结 论

- (1) 在 150 ℃热时效过程中,微米级细间距倒 装芯片组装焊点两侧焊盘界面 IMC 的演化不仅受本侧金属化材料的影响,还依赖于另一侧金属化材料的影响.
- (2) 在镍焊盘界面上由于从铜焊盘界面扩散过来的 Cu 原子对(Ni ,Cu) $_3Sn_4$ 转化成(Cu ,Ni) $_6Sn_5$ 的促进作用 ,在时效 300 h 后 ,镍焊盘界面(Ni ,Cu) $_3Sn_4$ 消失. 在铜焊盘界面上 ,由于从 Ni 原子扩散到铜焊盘界面对 Cu_3Sn 生长的抑制 在时效 100 h 后 Cu_3Sn 几乎没有生长.
- (3) 随着时效时间的增加,两侧界面(Cu, Ni)。 Sn_5 生长速率逐渐变缓,在镍焊盘界面上表现非常明显 Ni 原子在铜焊盘界面上除了抑制 Cu_3Sn 的生长还促进(Cu, Ni)。 Sn_5 生长. 此外在时效过程中焊盘界面(Cu, Ni)。 Sn_5 顶端形貌逐渐变平.

致谢:

感谢国家留学基金委全额资助作者田野作为国家公派联合培养博士生在美国佐治亚理工学院进行学习和研究. 文中试验完成于佐治亚理工学院电子封装中心 Professor Sitaraman 课题组 ,并由此课题组提供研究所需的经费,对此表示感谢.

参考文献:

- [1] Chang Chienwei , Yang Suchun , Tu Chunte , et al. Cross-interaction between Ni and Cu across Sn layers with different thickness [J]. Journal of Electronic Materials , 2007 , 36 (11): 1455 1461.
- [2] Lee H T, Lin Hengsheng, Lee C S, et al. Reliability of Sn-Ag-Sb lead-free solder joints [J]. Materials Science and Engineering: A, 2005, 407(1): 36-44.
- [3] Yang S C , Chang C C , Tsai M H , et al. Effect of Cu concentration , solder volume , and temperature on the reaction between SnAgCu solders and Ni [J]. Journal of Alloys and Compounds , 2010 ,499(2): 149 153.
- [4] Xia Yanghua, Lu Chuanyan, Chang Junlin. Interaction of intermetallic compound formation in Cu/SnAgCu/NiAu sandwich solder joints [J]. Journal of Electronic Materials, 2006, 35(5): 897-904.
- [5] 王 波,莫丽萍,吴丰顺,等. 微小互连高度下的电子封装焊点微观组织[J]. 焊接学报,2011,32(12):25-28.
 Wang Bo, Mo Liping, Wu Fengshun, et al. The microstructure of solder joint with micron stand-off height in electronic packaging [J]. Transactions of the China Welding Institution, 2001, 32 (12):25-28.
- [6] Tian Ye, Liu Xi, Chow Justin, et al. Comparison of Sn-Ag-Cu solder alloy intermetallic compound growth under different thermal excursions for fine-pitch flip-chip assemblies [J]. Journal of Electronic Materials, 2013, 42(8): 2724 2731.
- [7] Ho C E , Lin Y W , Yang S C , et al. Effects of limited cu supply on soldering reactions between SnAgCu and Ni [J]. Journal of E– lectronic Materials , 2006 , 35(5): 1017 – 1024.
- [8] Wang S J , Liu C Y. Study of interaction between Cu-Sn and Ni-Sn interfacial reactions by Ni-Sn3. 5Ag-Cu sandwich structure
 [J]. Journal of Electronic Materials , 2003 , 32 (11): 1303 1309.
- [9] Yoon J W , Moon W C , Jung S B. Interfacial reaction of Enig/ Sn-Ag-Cu/Enig sandwich solder joint during isothermal aging [J]. Microelectronic Engineering , 2006 , 83 (11): 2329 – 2334.
- [10] Tu K N , Lee T Y , Jang J W , et al. Wetting reaction versus solid state aging of eutectic SnPb on Cu[J]. Journal of Applied Physics , 2001 , 89(10): 4843 – 4848.

作者简介: 田 野 男 ,1981 年出生 ,博士 副教授. 主要从事微电子封装及可靠性方面的研究. 发表论文 11 篇. Email: tianye27@gmail.com

welded by double beam laser welding was developed based on birth-death control by the temperature of each element. In the method , an element was killed or activated according to its temperature during welding. The welding deformation obtained by two different computational methods were compared , one using the birth-death control method , and the other not. Except the above difference , material , geometry , boundary and initial conditions were identical for the two computational methods. The results showed that , whether using the birth-death control or not , which had an important influence on the computational results of deformation of T joint welded by double beam laser welding , and the reason was analyzed.

Key words: T joint; double beam laser welding; welding deformation

Numerical simulation of temperature and flow field of CO_2 gas shielded arc XIA Shengquan , OU Zhiming , SUN Xiaoming (Key Laboratory for Advanced Materials Processing Technology , Tsinghua University , Beijing 100084 , China) . pp 97-100

Abstract: A transient three-dimensional model of welding arc in CO_2 gas shielded arc welding was founded. With the experimental data of transient welding current , the basic theory of magneto hydrodynamics (MHD) and the coupling of multi-physics function of ANSYS , the distribution of the current density in electric field , the electromagnetic force in magnetic field , the temperature and velocity in the flow field were simulated. The simulation result for arc temperature filed is basically identical with the experimental data in the reference. In addition , the laminar hypothesis and incompressible assumption in the model were verified by computing the Reynolds number and Mach number. The numerical model can provide theoretical guidance with the controlling of welding arc in the CO_2 gas shielded arc welding , and it also lays a foundation for the further study on the analysis of transient CO_2 arc.

Key words: welding arc; numerical modeling; multi-field coupling

Interfacial IMC evolution in micron Sn-Ag-Cu soldered joint during thermal aging $${\rm TIAN~Ye^{1.2}}$$, WU ${\rm Yiping^2}$, AN ${\rm Bing^2}$, LONG Danfeng³ (1. School of Mechanical and Electrical Engineering , Henan University of Technology , Zhengzhou 450001 , China; 2. School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China; 3. Department of Precision Instruments and Mechanology , Tsinghua University , Beijing 100084 , China) . pp 101-104

Abstract: The interfacial intermetallic compound(IMC) evolution in micro-soldered joints in thermal aging process of flipchip assemblies was investigated. The results show that all (Ni , Cu) $_3$ Sn $_4$ on the Ni pad interface are transformed into (Cu , Ni) $_6$ Sn $_5$ after 300 h for thermal aging due to the effect of Cu atoms diffused from the Cu pad interface on the (Ni ,Cu) $_3$ Sn $_4$. On the Cu pad interface ,a thin layer of Cu $_3$ Sn forms on the interface between the Cu pad and (Cu ,Ni) $_6$ Sn $_5$ after 100 h for aging ,

however in the subsequent thermal aging , Cu_3Sn experiences little growth because of the limitation effect of Ni on its growth. The growth rate of ($\text{Cu}_4\text{Ni})_6\text{Sn}_5$ on the both pad interfaces are fast before 100 h , and after 100 h , it become slower and slower. Furthermore , as the aging time increases , the interface of ($\text{Cu}_4\text{Ni})_6\text{Sn}_5$ grain inclines to be flat.

Key words: lead-free solder; intermetallic compound; flip chip assembly; interfacial reaction; thermal aging

Research on A-MAG welding of weathering resistant steel

LU Hao¹, XING Liwei², CHEN Dajun³ (1. Technical Engineering Department, CSR Qingdao Sifang Co., Ltd., Qingdao 266111, China; 2. Technology Center, CSR Qingdao Sifang Co., Ltd., Qingdao 266111, China; 3. Harbin Welding Training Institute, Harbin 150046, China). pp 105 – 108

Abstract: A-MAG welding was proposed to obtain the welded joints with high quality. The experiment results show that A-MAG weld appearance, internal quality of welded joint and the welding operation performance are very well. Experiments also show that the A-MAG welding can improve weld penetration, which is compared with MAG welding under the same heat input. The tensile strength and bending strength of A-MAG welded joint are not reduced, while impact strength is improved, especially in the HAZ. Dimples size in fracture appearance of A-MAG welded joint is finer. It is showed that the active MAG welding can improve the welding quality and weld penetration of weathering resistant steel, which is applicable in engineering application.

Key words: A-MAG welding; weathering resistant steel; high speed train

Grain types and composition distribution of agglomerated flux with high slag detachability XU Guoliang¹, ZHENG Zhentai¹, LIU Pengfei², ZHANG Lisheng¹, WANG Tao¹ (1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China; 2. Luo Yang Institute of Ship Materials, Luoyang 471023, China). pp 109 – 112

Abstract: In order to enhance slag detachability of agglomerated flux for low-alloy steel in root bead ,uniform design method was used to optimize slag systems for MgO-Al₂O₃-CaO with high basicity and slag detachability test. Then scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and X-ray diffraction (XRD) were used to analyze the microstructure, compositions and phase of slag. The results show that the No. 10 slag with higher detachability is mainly made of compound rock phases, whose main elements are Zr, Mg, Ca, Al and Si. Since the element content is different in slag microzone, it can form snowflake grain with Zr, cross grain with Mg, and dentrite with Ca. Dentrite with Ca and snowflake grain with Zr can hinder the growth of cross grain with Mg. In addition , Zr has a role in refining cross grain with Mg. So the increase of the contents of marble and zircon sand in flux can change the continuity and direction of cross grain with Mg in slag. It will be a valid way to improve slag detachability.

Key words: agglomerated flux; microstructure; composition distribution; slag detachability