Vol. 28 No. 12

December 2007

# 热超声倒装键合工具和芯片振动的频率特征

王福亮, 韩 雷, 钟 据 (中南大学 机电工程学院 长沙 410083)

摘 要:采用激光多普勒振动测量系统。监测了热超声倒装键合过程工具末端和芯片的振动速度。由工具和芯片的振动速度有效值曲线。发现了"速度分离"现象,即键合启动数毫秒后,芯片的振动速度突然下降而工具的振动速度继续增大;"速度分离"表明金凸点/焊盘界面已初步形成键合强度。研究了工具和芯片振动速度信号的频率特征,发现芯片振动信号的3倍频成分的产生时刻就是"速度分离"发生的时刻,小键合力有利于"速度分离"发生,也就是有利于初始键合强度的形成。提出了以3倍频产生时刻为临界点的变键合力加载思路。

关键词: 热超声倒装键合; 激光多普勒测振; 频谱分析

中图分类号: TG453<sup>+</sup>.9 文献标识码: A 文章编号: 0253-360X(2007)12-043-04



王福亮

## 0 序 言

热超声倒装键合是无铅、绿色、基于面阵列Ⅰ心 的新一代微电子封装技术,与回流焊倒装键合相比, 具有键合温度低、压力小和时间短等优点[1-3]。 与 热超声引线键合相比, 具有输入输出点分布方便, 连 接效率高等优点。在超声键合过程中,超声振动是 决定键合强度的重要因素之一,超声功率的大小直 接决定着键合强度及其可靠性[45]。由热超声倒装 键合机的结构和原理可知, PZT (Pb (Zr 0.53 Ti 0.47) 10.3)将超声电源产生的电功率信号转换为相同频 率(一般为60 kHz 左右)的机械振动,并经变幅杆、 倒装工具传递到芯片/金凸点/焊盘界面[6]。其中, 超声在工具和芯片界面的传递决定了作用在键合界 面的超声能量大小,决定了超声振动对键合界面微 结构产生过程的影响。因此,研究工具和芯片界面 的相对运动对于键合强度的形成具有重要作用。作 者针对自行开发的倒装键合设备,采用激光多普勒 测振系统, 观测了热超声倒装过程中工具和芯片的 振动以及它们的相对运动变化过程,通过分析工具 芯片振动信号的频率特征,认识了倒装界面状态变 化过程、芯片振动信号特征的物理含义,发现键合界 面对键合能力的需求是时变的过程,据此提出了变 键合力加载的新思路,以提高设备的性能。

收稿日期: 2007-02-27

基金项目: 国家重点基础研究计划(973)项目(2003CB716202); 国家 自然科学基金资助项目(50705098)

## 1 热超声倒装键合试验

#### 1.1 试验平台

热超声倒装键合试验是在自行研制的热超声倒装键合设备上进行(超声频率为 60 kHz ±2 kHz),设备的组成和结构见文献[7,8]。倒装芯片的夹持方式是超声能量传递中的重要环节,决定了最后键合界面所能获得的能量。采用的芯片夹持方式为压力约束模式,倒装工具是实心的钨钢圆柱体,末端端面光滑平整,工具通过键合力所引起的摩擦力约束芯片,传递超声能量。

试验采用的芯片是  $1 \text{ mm} \times 1 \text{ mm}$  的硅芯片,表面有 28 个铝焊盘,其中对称分布的 8 个焊盘上植有直径约  $80 \text{ } \mu_{\text{m}}$ 、高度约  $30 \text{ } \mu_{\text{m}}$  的金凸点。试验用的基板是铜基板,整个表面都被制作成镀银的焊盘。

在上述条件下的热超声倒装键合试验过程为: (1) 将铜基板固定放置在工作台上,加热到键合所需要的温度(一般是 160 °C); 将芯片放在基板上,背面朝上。(2) 键合工具压下接触到芯片背面; 并施加所需要的键合力; 开启超声,由于键合力的存在,芯片与工具之间、金凸点,焊盘之间存在摩擦力,因此,超声振动得以在界面间传递。(3) 超声开启一段时间后关闭,然后再升起工具,撤走键合力,完成键合过程<sup>7</sup>。

#### 1.2 工具和芯片振动的观测

在上述条件下,当键合力、超声时间和超声功率分别为 2.35 N,100 ms 和 2.8 W 时,试验测得键合强

度较高(平均抗剪切力为 0.122 N 金凸点)。

在这种键合条件下,用PSV — 400 — M2 型激光多普勒测振系统观测了界面的运动传递过程,测量原理如图 1 所示。首先,激光光斑被精确地聚焦在倒装芯片 1 mm× 0.25 mm 的侧面或工具末端的侧面;然后启动热超声倒装键合,超声发生器在驱动变幅杆的同时启动同步触发系统,同步触发系统则启动测振系统,因此可测量到芯片或工具末端的运动速度及其变化过程。由于测振系统一次只能对准一个测点,工具与芯片的运动不能同时获得,为此需进行重复测量,一方面保证工具与芯片的运动曲线反映相同的键合过程;另一方面保证测量结果不是偶然现象。

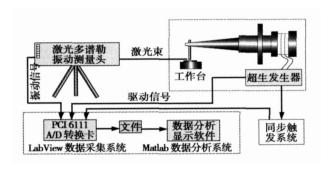



图 1 测振系统的构成

Fig 1 Structure of vibration measurement system

将多谱勒测振系统的采样频率设为 2.5 MHz (工具振动频率约为 58 kHz), 1%的预触发模式, 通过多次重复测试, 获得了键合过程中工具末端和芯片的典型运动速度曲线如图 2 所示, 采用 Matlab 编写程序可以获得对应的速度有效值曲线如图 3

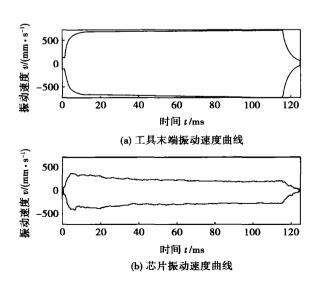



图 2 芯片和工具末端振动速度曲线 Fig 2 Vibration velocity of tool tip and chip

所示。图中时基零点是超声开启的时刻。

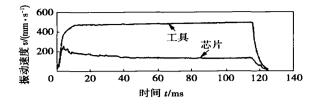



图 3 芯片和工具末端振动速度有效值曲线 Fig 3 Vibration velocity virtual value of tool tip and chip

由图 3 可知: (1) 在键合初始阶段(0~3 ms)芯片与工具末端几乎以相同速度 位移运动,表明,由键合力引起的工具 芯片间摩擦阻力大于金凸点 焊盘引脚间的运动阻力;工具 芯片界面没有明显相对运动。(2) 在 3 ms 前后,芯片运动速度开始小于工具运动速度,称之为"速度分离"现象。表明,金凸点 焊盘界面已初步形成键合强度,使得金凸点 焊盘界面的运动阻力大于工具 芯片界面的摩擦力,一部分相对运动转移到工具 芯片界面。此时,工具一部分能量传递到键合界面,形成键合强度;另一部分被消耗在倒装工具 芯片间的摩擦上,磨损芯片和工具,损害键合界面结构和强度。

"速度分离"是键合过程中重要临界点,反映了界面间运动状态的改变,工具 芯片界面相对运动逐渐加大:金凸点 焊盘界面的相对运动逐渐减小。

"速度分离"前后振动位移曲线的变化也证实了上述推断。图 4a 表明"速度分离"前工具和芯片振动位移是相似的,即工具和芯片间没有明显的相对运动;图 4b 表明"速度分离"后工具振动仍然是正弦曲线,但芯片的振动变化削峰的正弦曲线,即工



图 4 工具末端和芯片的运动细节 Fig. 4 Vibration details of tool tip and chip

具和芯片在 bad 阶段产生了相对运动。

因此,在键合过程中,确定"速度分离"的发生时刻,并进行过程控制,有利于消除工具,芯片界面的相对运动,减小芯片和工具磨损。

# 2 工具和芯片振动信号频率特征

#### 2.1 丁具和芯片振动的频域特征

倒装工具和芯片振动速度曲线的时域特征反映了倒装工具和芯片的相对运动变化过程。而振动速度曲线的频域特征将进一步揭示振动变化过程的含义。对图 2 所示的倒装工具和倒装芯片振动速度曲线做快速傅里叶变换,获得其频率组成如图 5 所示,倒装工具和倒装芯片的振动频率集中在 500 kHz 以下。倒装工具的振动频率组成比较单一,主要是56 kHz,相对而言 112 kHz 几乎可忽略;而倒装芯片的振动频率成分则比较复杂,包括 56 kHz 以及56 kHz 的 2~5 倍频,其中 56 kHz 是基频,也是主要成分;且表现出 3 倍频大于 2 倍频、5 倍频大于 4 倍频的非线性特征。

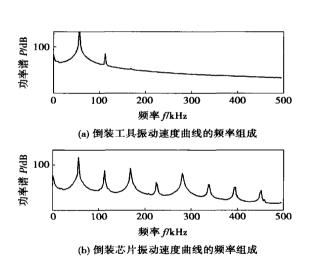



图 5 工具和芯片振动速度曲线的频率组成 Fig. 5 Velocity frequency spectrum of tool tip and chip

由傅里叶变换理论可知, 倒装芯片振动曲线出现削峰(图 4b), 表现在频率域上则是振动信号中产生了高频谐波成分, 如图 5b 所示。而削峰则表明金凸点和焊盘之间产生了初始的键合强度, 产生了粘着, 限制了芯片的运动, 表明芯片和工具间的相对滑动。因此, 削峰是连接强度产生的直接表征, 而高频成分出现时刻则是金凸点和焊盘之间开始产生键合强度的标志。

将芯片振动位移信号的 56, 168, 280 kHz 等几

种主要的成分滤出,计算它们的有效值随时间的变 化过程,由高频成分出现的过程,可了解芯片/工具、 金凸点,焊盘之间的相对变化过程。计算结果如 图 6a 所示: 前 20 ms 的细节展开后如图 6b 所示。 由图可知.(1) 在键合全过程中,56 kHz(基频)是主 要成分,随着超声开启而出现。在"速度分离"时刻达 到最大,之后逐渐下降,达到一个稳定阶段,直到超 声关闭, 然后逐渐衰减到零。(2) 在键合开始时, 3 倍频几乎没有,表明此时芯片是简谐振动,工具与芯 片粘着在一起振动, 金凸点与焊盘之间是完全的相 对运动: 随着键合的进行, 3 倍频信号开始缓慢增 加:到"速度分离"时刻便是迅速增加。表明芯片位 移曲线开始出现削峰,金凸点和焊盘之间开始产生 键合强度,限制芯片跟随工具运动,芯片出现相对倒 装工具的滑动。"速度分离"后,3倍频信号维持在 一个比较稳定的水平,直到超声关闭。(3)5倍频信 号变化规律与3倍频信号类似,也反映了芯片类似 的运动规律,"速度分离"前与倒装工具一起振动; "速度分离"后,开始出现相对倒装工具的相对运动。

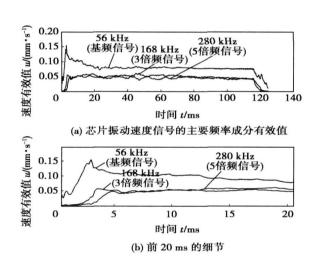



图 6 芯片振动速度信号三种主要频率成分有效值 Fig 6 Mainly components of frequency spectrum

因此在提高键合强度的工艺参数设计中,可将 3 倍频信号作为"速度分离"出现的标志,以此作为 键合过程控制的依据。

### 2.2 键合力对芯片振动主要频率成分的影响

进一步研究了键合力对芯片振动信号各种频率 成分及其 变化 的影响。试验 条件为 键合 温度 163 °C; 键合功率 2.8 W(实际输入功率因键合力而异); 键合时间 100 ms; 键合力分别为 1.18, 1.76, 2.35 N。测得各种键合力条件下芯片的振动。

图7表明了键合力对芯片振动信号的基频

(56 kHz)成分的影响(为了能看清变化细节,仅绘制了前 20 ms 细节,下同)。由图可知:(1)基频成分随键合力增加而增加,稳定阶段的振幅也随着增加。(2)大键合力(2.35 N)条件下"速度分离"的时刻延迟,小键合力(1.18 N)条件下的"速度分离"发生时刻几乎提前了一半。产生这种情况可能有两个因素,一是在小键合力条件下,金凸点和焊盘之间在键合初期,更容易产生相对滑动,将氧化膜去除,迅速形成键合;二是工具,芯片界面产生的摩擦力太小,很快就带不动芯片。这两个因素都有利于键合强度的生成和保持。(3)在"速度分离"前,不同键合力条件下的振动基频信号上升速度及过程相似。

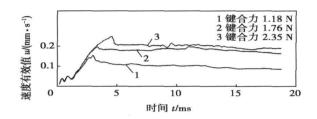



图 7 键合力对芯片振动信号基频(56 kHz)成分的影响 Fig 7 Effect of bonding force on basic frequency

图 8 表明了键合力对芯片振动信号 3 倍频的影响。由图可知: (1) 不同的键合力对信号变化规律的影响是相同的,"速度分离"前 3 倍频信号开始缓慢增加;"速度分离"时刻对应着 3 倍频信号的迅速增加,"速度分离"后 3 倍频信号维持在一个比较稳定的水平,直到超声关闭。(2) 3 倍频信号迅速上升的阶段明显,但是迅速上升现象与最后键合的强度并无统计性规律。迅速上升的阶段对应"速度分离"的时刻。(3) 不同的键合力对 3 倍频信号迅速上升的时刻有影响, 小键合力(1.18 N)条件下产生得比较早; 大键合力(2.35 N)条件下产生得比较迟。

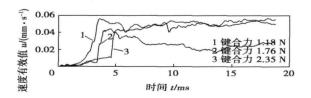



图 8 键合力对芯片振动信号 3倍频(56×3 kHz)成分的影响 Fig. 8 Effect of bonding force on 3rd harmonic

由上述分析可知,"速度分离"前,小键合力情况

下 3 倍频信号出现得早,也就是芯片振动曲线很快出现削峰,表面产生了初始的键合强度,因此,小键合力有利于金凸点和焊盘界面产生初始键合。因此,从这个角度而言,键合过程中的键合力不应恒定不变,在"速度分离"前,应输入小键合力。

# 3 结 论

- (1) 观测了键合过程中工具末端 芯片的振动, 发现了"速度分离"现象。"速度分离"表明金凸点和 焊盘之间开始产生键合强度,并限制芯片跟随工具 运动,芯片出现相对倒装工具的滑动。
- (2)分析了芯片振动信号的频率组成,以及它们在键合过程中的变化。研究了键合力对各频率成分的影响,发现"速度分离"前,小键合力有利于产生初始的键合强度。提出了通过倒装芯片振动信号的3倍频来判断"速度分离"时刻的方法,可作为键合过程控制的依据。

#### 参考文献:

- Yatsuda H, Eimura T. Flip-chip assembly technique for SAW devices
  [C] //Proceedings of the 1995 ISHM International Symposium on Microelectronics. New York; IEEE Press, 1995; 365-370.
- [2] Taizo T, Tomohiro I, Ikuo M. Thermosonic flip-chip bonding for SAW filter J. Microelectronics Reliability, 2004, 44(5); 149—154.
- [3] Luk C F, Chan Y C, Hung K C. Development of gold to gold interconnection flip chip bonding for chip on suspension assemblies [J]. Microelectronics Reliability, 2002, 42(6): 381—389.
- [4] Mclaren T S, Kang S Y, Zhang W, et al. Thermosonic bonding of an optical transceiver based on an 8 \*8 vertical cavity surface emitting laser array[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B; Advanced Packaging, 1997, 20(2): 152-160.
- [5] Kang S Y, Williams P M, McLaren T S, et al. Studies of thermosonic bonding for flip-chip assembly [J]. Materials Chemistry and Physics, 1995, 42(7): 31-37.
- [6] 王福亮, 韩 雷, 钟 掘. 超声功率对粗铝丝超声引线键合强度的影响[1]. 中国机械工程, 2005, 16(10): 919-923.
- [7] 王福亮,韩 雷,钟 掘 热超声倒装键合环状界面的形成 [J]. 焊接学报, 2006, 27(11): 65-68.
- [8] 王福亮,李军辉,韩 雷,等.压力约束模式下的热超声倒装键合实验[J].中国机械工程,2006,17(18):1944-1947.

作者简介: 王福亮 男, 1979 年出生, 博士。主要研究方向为微电子封装工艺与装备。发表论文 15 篇

Email: wangfuliang@mail.csu.edu.cn

Abstract: The paper studied principle of arc produced heat in VPPA and analysed how welding parameters influence arc heat from physical properties of arc on Al alloy. It is shown that dissymmetrical electrode properties have great influence on produced heat of arc in positive and negative times. When Al alloy is used to be negative electrode, negative voltage produced more heat. Different parameters of welding current and lasting times are very important factors to produce heat in positive and negative times.

**Key words:** variable polarity plasma welding; electrical properties; aluminum alloy

**Detection method of spot welding based on fractal and support vector machine**LIU Pengfei, SHAN Ping, LUO Zhen (School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China). p38—42

Abstract: Because of characteristic of fractal dimension which present quantitatively describing of complexity of a sample data series and remarkable advantage of support vector machine (SVM) in small sample classification and regression, fractal dimension of signal data series is adopted as eigenvectors, and a novel detection method based on fractal and SVM is presented. Two models based on SVM are constructed. One is about flatters of spot welding and the other is about defect of nugget size. A array of SVM is consist of these two models. The array is used to detect the two defects synchronously. It is shows that this new method fits for nondestructive detection of spot welding from analysis of experiment results. This array of SVM can detect the two defects of flatters and the little nugget size better in process of spot welding.

**Key words:** fractal; support vectors machine; detection; spot welding; flatter

Vibration frequency characters of chip and bonding on thermosonic flip chip bonding WANG Fuliang HAN Lei, ZHONG Jue (School of Mechanical and Electronical Engineering Central South University, Changsha 410083, China). p43—46

Abstract: The vibration velocity of tool tip and chip on thermosonic flip chip (TSFC) bonding was monitored with a laser Doppler vibrometer, and the "stall" phenomena was observed from the virtual value curve of vibration velocity, i. e., after the TSFC bonding started a fever milliseconds the chip velocity decreases suddenly, while the tool tip velocity still increases. Stall indicated that the bump/pad interface has formed initial bonding strength. And the frequency characters of the vibration velocity signals were also obtained. It is found that the 3rd harmonics of chip vibration velocity signal indicates the stall phenomena, i.e., when the 3rd harmonics appeared, the stall happens. Experiment results show that little bonding force is good for produce stall.

**Key words:** the mosonic flip chip bonding; laser Doppler vibration measurement; spectral analysis

Effects of immediate water cooling and normalization after

welding on microstructure and hardness of heat affected zone of ultra-fine grain steels welded joint ZHANG Guifeng<sup>1</sup>, MIAO Huixia<sup>1</sup>, ZHANG Jianxun<sup>1</sup>, PEI Yi<sup>1</sup>, WANG Jian<sup>2</sup>, ZHANG Yantao<sup>3</sup> (1. School of Material Science and Engineering Xi' an Jiaotong University, Xi' an 710049, China; 2. Technical Center of Anshan Iron and Steel Group Corporation, Anshan 114000, Liaoning, China; 3. Shandong Electric Power Construction No. 1 Project Company, Jinan 250100, China). p47—50

Abstract: To refine the grain size of the coarse grain heat affected zone (CGHAZ) in the gas tungsten arc welded joints of ultrafine grain (UFG) steels of 400 MPa strength, the immediate water cooling before transformation completion and normalization after welding were performed. Their effects on the microstructure and hardness of the HAZ were investigated. The results show that although the grain size of CGHAZ does not decrease for the immediate water cooling, the width of CGHAZ decreases compared with the air cooling condition. The effective grain sizes in CGHAZ are significantly refined by first time normalization treatment after weldings while the grain sizes in the fine grain heat affected zone (FGHAZ) become coarser than those before normalization. The hardness of HAZ of the joint subjected to immediate water cooling is higher than that of the joint subjected to air cooling. The whole hardness of each joint after normalization decreases much. There is a favorable hardness match between the HAZ and the original base metal after first normalization treatment only for the immediate water cooling joint. Therefore the immediate water cooling followed by one time normalization is recommended to refine the grain size in CGHAZ and to make the hardness of HAZ close to that of original parent materials.

**Key words:** ultra-fine grain steels, heat affected zone; coarse grain heat affected zone; normalization; hardness

Distribution and diffusion mechanism of Sn in interface of ZA alloy soldered joints LIU Xiuzhong II Shitong CHEN Libo (School of Material Science and Engineering Shandong University, Jinan 250061, China). p51—55

Abstract Microstnucture and its characteristic of ZA soldered joints distribution of Sn element and reaction product of Sn in interface of ZA alloy soldered joints are studied by optical microscope scanning electron microscope and electron probe microanalysis reskectively. The results show that Sn mainly diffuses by volume diffusion and forms a wide diffusion zone. Sn in interface also reacts with some elements in parent metal. New phases such as  $\alpha$ —CuSn and Cu<sub>20</sub>Sn<sub>6</sub> are formed. The diffusion and reaction of Sn will be propitious to the bonding strengths and mechanical properties of soldered joints, which can satisfy the service performance of soldered joints.

**Key words:** ZA alloy; soldering; interface; diffusion of Sn

ANN prediction models for tensile properties of TIG welded