高级检索

外加磁场下GMAW熔池电磁力的有限元计算

柏兴旺, 张海鸥, 王桂兰

柏兴旺, 张海鸥, 王桂兰. 外加磁场下GMAW熔池电磁力的有限元计算[J]. 焊接学报, 2016, 37(1): 46-50.
引用本文: 柏兴旺, 张海鸥, 王桂兰. 外加磁场下GMAW熔池电磁力的有限元计算[J]. 焊接学报, 2016, 37(1): 46-50.
BAI Xingwang, ZHANG Haiou, WANG Guilan. Finite element analysis of electromagnetic force in GMAW melt pool induced by external magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 46-50.
Citation: BAI Xingwang, ZHANG Haiou, WANG Guilan. Finite element analysis of electromagnetic force in GMAW melt pool induced by external magnetic field[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(1): 46-50.

外加磁场下GMAW熔池电磁力的有限元计算

基金项目: 国家自然科学基金资助项目(51175203,51374113,51505210)

Finite element analysis of electromagnetic force in GMAW melt pool induced by external magnetic field

  • 摘要: 针对外加各种磁场作用下的GMAW堆焊过程,开发了基于电弧简化模型的熔池电磁力工程化有限元计算方法. 利用此方法,系统研究了无外加磁场、外加纵向磁场和横向磁场三种工况下熔池内电磁力的分布情况,并预测了电磁力对熔池对流的影响. 结果表明,焊接自有磁场驱动了熔池中心收缩下沉流;外加纵向磁场导致周向搅拌流,形成电磁搅拌细化晶粒;外加横向磁场可以驱动熔池流动演变为"单涡"对流状态,有利于熔池接纳熔滴减少飞溅. 基于模拟结果的预测与试验结果吻合,因此验证了所用计算方法的正确性.
    Abstract: A simulation method based on simplified arc model is developed for the analysis of GMAW deposition with various external magnetic fields. The electromagnetic force distributions in the workpiece produced by longitudinal and transversal magnetic fields are systematically investigated in comparison with the case without external field. The results reveal that the inherent electromagnetic force of GMAW welding drive the converging and sinking flow in the central of melt pool. The external longitudinal field results in circumferential electromagnetic force which stirs the melt pool, which in turn refine the microstructure. The external transversal field of specific direction could convert the melt convection into "single-vortex" state which help the melt pool to absorb molten droplet and therefore reduce the spatter. The agreement between experimental data and the simulation results verifies the reliability and universality of the numerical model.
  • [1] 刘政军, 李乐成, 宗 琳, 等. 磁场作用下镍基等离子弧堆焊层的组织及耐磨性能[J]. 焊接学报, 2012, 33(2): 53-56. Liu Zhengjun, Li Lecheng, Zong Lin, et al. The effect of magnetic field on the microstructure and abrasion property of nickle-based component deposited by plasma arc welding[J]. Transactions of the China Welding Institution, 2012, 33(2): 53-56.
    [2] 李海刚, 殷咸青, 罗 键, 等. 用电磁搅拌提高LD10CS铝合金焊接接头的质量[J]. 焊接学报, 1998, 19(12): 101-105. Li Haigang, Yin Xianqing, Luo Jian, et al. Improving weld quality of LD10CS aluminum alloy by electromagnetic stirring[J]. Transactions of the China Welding Institution, 1998, 19(12): 101-105.
    [3] 王 军, 陈树君, 卢振洋, 等. 磁场控制横向MAG焊接焊缝成型工艺的研究[J]. 北京工业大学学报, 2003, 29(2): 147-150. Wang Jun, Chen Shujun, Lu Zhenyang, et al. Using magnetic field to control MAG weld bead formation[J]. Journal of Beijing Polytechnic University, 2003, 29(2): 147-150.
    [4] 岳建锋, 李亮玉, 刘文吉, 等. 基于外加高频交变磁场下MAG 焊熔池成形控制[J]. 机械工程学报, 2013, 49(8): 65-70. Yue Jianfeng, Li Liangyu, Liu Wenji, et al. The formation control of MAG melt pool using high-frequency alternative magnetic field[J]. Chinese Journal of Mechanical Engineering, 2013, 49(8): 65-70.
    [5] Yin X, Gou J, Zhang J, et al. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields[J]. Journal of Physics D: Applied Physics, 2012, 45(28): 285203-11-13.
    [6] Lin Z Q, Li Y B, Wang Y S, et al. Numerical analysis of a moving gas tungsten arc weld pool with an external longitudinal magnetic field applied[J]. International Journal of Advanced Manufacturing Technology, 2005, 27(4): 288-295.
    [7] Gale W F, Totemeier T C. Smithells metals reference book[M]. Oxford: Butterworth-Heinemann, 2003.
    [8] Tsao K C, Wu C S. Fluid flow and heat transfer in GMA weld pools[J]. Welding Journal, 1988, 67(3): 70-75.
    [9] Hu J, Guo H, Tsai H L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2008, 51(10): 2537-2552.
    [10] Zhang W, Roy G G, Elmer J W, et al. Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel[J]. Journal of Applied Physics, 2003, 93(5): 3022-3033.
    [11] 刘政军, 宋兴奎, 邵大伟, 等. 外加纵向磁场对等离子弧堆焊层组织与性能的影响[J]. 焊接学报, 2010, 31(1): 71-74. Liu Zhengjun, Song Xingkui, Shao Dawei, et al. Effect of applied longitudinal magnetic field on plasma arc hard facing miscrostructure and property[J]. Transactions of the China Welding Institution, 2010, 31(1): 71-74.
    [12] 华爱兵, 陈树君, 殷树言, 等. 外加纵向磁场对MAG焊焊缝成形的影响机理[J]. 北京工业大学学报, 2010, 36(7): 876-881. Hua Aibing, Chen Shujun, Yin Shuyan, et al. The effect mechanism of external longitudinal magnetic field on the MAG weld bead formation[J]. Journal of Beijing Polytechnic University, 2010, 36(7): 876-881.
  • 期刊类型引用(5)

    1. 温志刚,田雷,沈楠楠,宋付成,檀财旺. 交变磁场对激光-电弧复合焊316L接头组织及腐蚀性能的影响. 热加工工艺. 2025(07): 157-162 . 百度学术
    2. 潘宇,吕彦明,赵鹏,白少昀,黄强,刘昊程. 电弧增材单道多层应力场数值模拟与变形分析. 机械科学与技术. 2023(05): 765-771 . 百度学术
    3. 张栩菁,魏艳红,赵文勇,龙金卫,刘仁培. 电弧增材制造控形改性技术研究进展. 机械制造文摘(焊接分册). 2022(01): 1-13 . 百度学术
    4. 周祥曼,刘练,张从阳,吴海华,吕俊忠,田启华. 电弧增材制造中两种特殊位置熔积的电弧仿真. 热加工工艺. 2020(09): 130-135 . 百度学术
    5. 贾华,袁日栋. 不同电角度电磁搅拌器磁场分析. 铸造技术. 2018(12): 2656-2659 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  648
  • HTML全文浏览量:  2
  • PDF下载量:  519
  • 被引次数: 25
出版历程
  • 收稿日期:  2014-03-10

目录

    /

    返回文章
    返回