高级检索

VCrAl1.21Ni0.93Co1.85高熵合金中间层真空扩散连接TC4钛合金和T2铜

吴宝生, 李鹏, 马月婷, 董红刚

吴宝生, 李鹏, 马月婷, 董红刚. VCrAl1.21Ni0.93Co1.85高熵合金中间层真空扩散连接TC4钛合金和T2铜[J]. 焊接学报, 2024, 45(9): 1-13. DOI: 10.12073/j.hjxb.20230905001
引用本文: 吴宝生, 李鹏, 马月婷, 董红刚. VCrAl1.21Ni0.93Co1.85高熵合金中间层真空扩散连接TC4钛合金和T2铜[J]. 焊接学报, 2024, 45(9): 1-13. DOI: 10.12073/j.hjxb.20230905001
WU Baosheng, LI Peng, MA Yueting, DONG Honggang. Vacuum diffusion bonding of TC4 titanium alloy to T2 copper with VCrAl1.21Ni0.93Co1.85 high entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 1-13. DOI: 10.12073/j.hjxb.20230905001
Citation: WU Baosheng, LI Peng, MA Yueting, DONG Honggang. Vacuum diffusion bonding of TC4 titanium alloy to T2 copper with VCrAl1.21Ni0.93Co1.85 high entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(9): 1-13. DOI: 10.12073/j.hjxb.20230905001

VCrAl1.21Ni0.93Co1.85高熵合金中间层真空扩散连接TC4钛合金和T2铜

基金项目: 国家自然科学基金面上项目(52275314,52075074)
详细信息
    作者简介:

    吴宝生,博士;主要研究方向为异种材料钎焊和扩散焊;Email: wubaosheng1994@163.com

    通讯作者:

    董红刚,博士,教授;Email: donghg@dlut.edu.cn

  • 中图分类号: TG 453

Vacuum diffusion bonding of TC4 titanium alloy to T2 copper with VCrAl1.21Ni0.93Co1.85 high entropy alloy interlayer

  • 摘要:

    根据伪二元合金设计策略和共晶高熵合金设计理念,设计并制备了VCrAl1.21Ni0.93Co1.85共晶高熵合金中间层用于真空扩散连接TC4钛合金和T2铜,研究了不同连接温度对TC4/T2扩散连接接头微观组织和力学性能的影响规律. 结果表明,所有接头界面结合良好无缺陷产生,在TC4侧的连接界面附近发生了部分相变,由α-Ti向β-Ti进行转变,并且形成了部分魏氏体组织. Ti2(Co, Ni),Ti2(V, Cr, Al),Ti(V, Cr, Co)和(V, Cr)(Al, Ni, Co)相形成在TC4/VCrAl1.21Ni0.93Co1.85界面上,而VCrAl1.21Ni0.93Co1.85/T2界面上形成了(V, Cr)(Al, Ni, Co)和(V, Cr)(Cu, Ni, Co)3相. 界面上形成高熵微观组织结构起到高熵固溶强化作用,扩散层I和II对应的生长激活能分别为229 kJ/mol和191 kJ/mol,接头抗剪强度在880 ℃时达到最大为194 MPa,接头主要沿着BCC基体相和B2相交替位置断裂,断口表面出现河流花样特征,属于一种典型的解理断裂模式.

    Abstract:

    VCrAl1.21Ni0.93Co1.85 eutectic high entropy alloy interlayer was designed based on the pseudo-binary strategy and design concept of eutectic high entropy alloy, which was used to join TC4 titanium alloy and T2 copper via vacuum diffusion bonding. The influence of bonding temperature on the microstructure and mechanical property of TC4/T2 diffusion bonded joint was investigated. The results showed that all the joint were well combined without defects. TC4 titanium alloy adjacent to the diffusion layer underwent a phase transition from α-Ti to β-Ti, forming part of the Widmanstatten structure. Ti2(Co, Ni), Ti2(V, Cr, Al), Ti(V, Cr, Co) and (V, Cr)(Al, Ni, Co) phases appeared in the TC4/VCrAl1.21Ni0.93Co1.85 interface while (V, Cr)(Al, Ni, Co) and (V, Cr)(Cu, Ni, Co)3 phases formed in the VCrAl1.21Ni0.93Co1.85/T2 interface. The high entropy microstructure formed in the interface, which played the role of high entropy solution strengthening. The growth activation energy of diffusion layer I and II was 229 kJ/mol and 191 kJ/mol, respectively. The maximum shear strength of joint at 880 ℃ reached 194 MPa. The joint fracture was mainly along the BCC matrix phase and B2 phase alternately, and the fracture surface had the feature of river pattern, which belonged to a typical cleavage fracture mode.

  • 图  1   试验设计和准备

    Figure  1.   Experimental design and preparation. (a) sample assembly; (b) sample size; (c) welding process curve; (d) shear testing apparatus

    图  2   VCrAl1.21Ni0.93Co1.85多组元合金

    Figure  2.   VCrAl1.21Ni0.93Co1.85 multi-component alloy. (a) microstructure; (b) XRD pattern

    图  3   VCrAl1.21Ni0.93Co1.85中间层元素面扫描

    Figure  3.   Elemental map scanning results of VCrAl1.21Ni0.93Co1.85 interlayer. (a) BEI; (b) Al; (c) Cr; (d) V; (e) Ni; (f) Co

    图  4   不同连接温度保温60 min参数下TC4/VCrAl1.21Ni0.93Co1.85/T2接头的微观组织形貌

    Figure  4.   Microstructure morphology of TC4/VCrAl1.21Ni0.93Co1.85/T2 joints for 60 min under various bonding temperature. (a) 840 ℃; (b) 860 ℃; (c) 880 ℃; (d) 900 ℃

    图  5   不同连接温度下TC4/VCrAl1.21Ni0.93Co1.85和VCrAl1.21Ni0.93Co1.85/T2两侧的界面微观组织

    Figure  5.   Interfacial microstructure on TC4/VCrAl1.21Ni0.93Co1.85 and VCrAl1.21Ni0.93Co1.85/T2 sides under various bonding temperature. (a) TC4 840 ℃; (b) T2 840 ℃; (c) TC4 860 ℃; (d) T2 860 ℃; (e) TC4 880 ℃; (f) T2 880 ℃; (g) TC4 900 ℃; (h) T2 900 ℃

    图  6   880 ℃/60 min参数下TC4/VCrAl1.21Ni0.93Co1.85侧的元素分布

    Figure  6.   Distribution of elements on TC4/VCrAl1.21Ni0.93Co1.85 side at 880 ℃ for 60 min. (a) BEI; (b) Ti; (c) Co; (d) V; (e) Al; (f) Ni; (g) Cr

    图  7   880 ℃/60 min参数下VCrAl1.21Ni0.93Co1.85/T2侧的元素分布

    Figure  7.   Distribution of elements on the VCrAl1.21Ni0.93Co1.85/T2 side at 880 ℃ for 60 min. (a) BEI; (b) Co; (c) Cu; (d) V; (e) Al; (f) Ni; (g) Cr

    图  8   在TC4/EHEA侧界面扩散层透射表征

    Figure  8.   TEM characterization of interfacial diffusion layer on the TC4/EHEA side. (a) bright field image; (b) 1; (c) 2; (d) 3; (e) 4; (f) 5

    图  9   在EHEA/T2侧界面扩散层透射表征

    Figure  9.   TEM characterization of interfacial diffusion layer on the EHEA/T2 side. (a) bright field image; (b) 1; (c) 2; (d) 3

    图  10   TC4/VCrAl1.21Ni0.93Co1.85和VCrAl1.21Ni0.93Co1.85/T2两侧界面层动力学分析

    Figure  10.   Kinetics of interfacial layers on TC4/VCrAl1.21Ni0.93Co1.85 and VCrAl1.21Ni0.93Co1.85/T2 sides. (a) thickness of diffusion layers for 60 min under different temperature; (b) growth activation energy of diffusion layers I and II

    图  11   60 min不同连接温度下接头的力学性能

    Figure  11.   Mechanical properties of joints at different connection temperatures for 60 min. (a) shear strength; (b) load-displacement curve

    图  12   不同连接温度下TC4/VCrAl1.21Ni0.93Co1.85/T2接头的断裂路径

    Figure  12.   Fracture paths of TC4/VCrAl1.21Ni0.93Co1.85/T2 joints under various bonding temperature. (a) 840 ℃; (b) 860 ℃; (c) 880 ℃; (d) 900 ℃

    图  13   880 ℃/60 min参数下TC4/VCrAl1.21Ni0.93Co1.85/T2接头的断口形貌

    Figure  13.   Fracture morphologies of TC4/VCrAl1.21Ni0.93Co1.85/T2 joint at 880 ℃ for 60 min. (a) on TC4 side; (b) enlarged morphology in Fig. 13(a); (c) on T2 side; (d) enlarged morphology in Fig. 13(c)

    图  14   60 min不同温度下TC4/VCrAl1.21Ni0.93Co1.85/T2接头断口表面的XRD

    Figure  14.   XRD of fracture surface for TC4/VCrAl1.21Ni0.93Co1.85/T2 joints under different temperatures for 60 min. (a) TC4 side at 880 ℃; (b) T2 side at 880 ℃; (c) TC4 side at 900 ℃; (d) T2 side at 900 ℃

    表  1   母材和中间层的化学成分(质量分数,%)

    Table  1   Chemical component of base materials and interlayer

    材料AlVCoCrNiSiPSTiCu
    TC46.033.97余量
    T2≤0.03≤0.02≤0.01余量
    中间层10.9117.0136.4117.3618.31
    下载: 导出CSV

    表  2   扩散连接工艺参数

    Table  2   Parameters of the diffusion bonding

    连接温度
    T/℃
    保温时间
    t/min
    连接压力
    P/MPa
    中间层厚度
    l/μm
    1840608160
    2860608160
    3880608160
    4900 608160
    下载: 导出CSV

    表  3   图2(a)中标记位置的EPMA定量点分析结果(原子分数,%)

    Table  3   EPMA quantitative analysis results of the marked locations in Fig. 2(a)

    位置AlVCoCrNi可能的相
    A19.115.835.515.813.8B2
    B13.217.635.421.712.1BCC
    下载: 导出CSV

    表  4   图5(e)和图5(f)中标记点处的元素分析结果(原子分数,%)

    Table  4   Elemental analysis results of the marked points in Fig. 5(e) and Fig. 5(f)

    位置TiCuCoAlVCrNi可能的相
    175.70.421.22.20.20.4Ti3Al
    270.04.810.88.04.71.7β-Ti
    358.819.06.83.43.18.9Ti2(Co, Ni)
    461.36.011.711.18.21.8Ti2(V, Cr, Al)
    539.415.59.514.116.45.1Ti(V, Cr, Co)
    67.525.716.419.123.38.0(V, Cr)(Al, Ni, Co)
    710.341.73.217.116.211.5(V, Cr)(Cu, Ni, Co)2
    843.524.42.111.512.56.0(V, Cr)(Cu, Ni, Co)3
    下载: 导出CSV

    表  5   图13(b)和图13(d)中标记点的元素分析结果(原子分数,%)

    Table  5   Elemental analysis results of the marked points in Fig. 13(b) and Fig. 13(d)

    位置TiAlVCrCoNi可能的相
    156.99.25.96.215.46.4Ti3(Co, Ni)
    248.417.75.35.318.05.5Ti3AlCo
    321.223.311.310.224.59.5TiAl(V, Cr, Co, Ni)
    458.09.45.85.414.96.5Ti2(V, Cr, Co)
    55.517.120.125.125.17.1BCC
    60.219.115.814.535.714.7BCC
    717.316.821.617.820.65.9TiAl(V, Cr, Co)2
    850.716.810.18.010.83.6Ti3Al(V, Co)
    90.624.215.412.332.914.6B2
    1060.08.23.73.916.47.8Ti2(Co, Ni)
    110.112.418.821.834.712.2BCC
    1219.220.612.710.127.210.2TiAl(V, Cr)(Co, Ni)
    130.322.515.514.733.613.4B2
    下载: 导出CSV
  • [1] 王猛, 张立平, 赵琳瑜, 等. 增材制造和锻造TC11钛合金激光焊接头组织与力学性能[J]. 焊接学报, 2023, 44(10): 102 − 110. doi: 10.12073/j.hjxb.20221114001

    Wang Meng, Zhang Liping, Zhao Linyu, et al. Comparative study on the microstructure and mechanical properties of the laser welded joints of additive manufactured and forged TC11 titanium alloy[J]. Transactions of the China Welding Institution, 2023, 44(10): 102 − 110. doi: 10.12073/j.hjxb.20221114001

    [2]

    Xiao J, Lei Y D, Chen S J, et al. Weld deformation control based on programmable multi-point flexible support[J]. China Welding, 2022, 31(3): 30 − 34.

    [3] 毕志雄, 李雪交, 吴勇, 等. 钛箔/钢爆炸焊接的界面结合性能[J]. 焊接学报, 2022, 43(3): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    Bi Zhixiong, Li Xuejiao, Wu Yong, et al. Interfacial bonding properties of titanium foil/steel explosive welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 81 − 85. doi: 10.12073/j.hjxb.20211105002

    [4] 沈元勋, 王路乙, 李秀朋, 等. 钨铜/铍青铜异质钎焊界面组织与性能[J]. 焊接学报, 2022, 43(3): 50 − 54. doi: 10.12073/j.hjxb.20211025001

    Shen Yuanxun, Wang Luyi, Li Xiupeng, et al. Microstructure and properties of brazed W-Cu composites and beryllium bronze joint[J]. Transactions of the China Welding Institution, 2022, 43(3): 50 − 54. doi: 10.12073/j.hjxb.20211025001

    [5]

    Huang L B, Dong H G, Ma Y T, et al. Interfacial layer regulation and its effect on mechanical properties of Ti6Al4V titanium alloy and T2 copper dissimilar joints by cold metal transfer welding[J]. Journal of Manufacturing Processes, 2022, 75: 1100 − 1110. doi: 10.1016/j.jmapro.2022.01.056

    [6]

    Yusefi A, Kokabi A H, Abedini R, et al. Microstructure evolution and mechanical properties analysis in dissimilar ultrasonic metal welding of aluminum to copper[J]. Journal of Materials Research and Technology, 2024, 30: 2922 − 2935. doi: 10.1016/j.jmrt.2024.04.037

    [7]

    Cao R, Feng Z, Lin Q, et al. Study on cold metal transfer welding–brazing of titanium to copper[J]. Materials & Design, 2014, 56: 165 − 173.

    [8]

    Cao R, Feng Z, Chen J H. Microstructures and properties of titanium–copper lap welded joints by cold metal transfer technology[J]. Materials & Design, 2014, 53: 192 − 201.

    [9]

    Wang Q, Zhang K, Niu W J. Microstructural characteristic and mechanical properties of titanium-copper alloys in-situ fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 885: 161032. doi: 10.1016/j.jallcom.2021.161032

    [10]

    Zhao Y, Wang W Y, Yan K, et al. Microstructure and properties of Cu/Ti laser welded joints[J]. Journal of Materials Processing Technology, 2018, 257: 244 − 249. doi: 10.1016/j.jmatprotec.2018.03.001

    [11]

    Guo S, Zhou Q, Peng Y, et al. Study on strengthening mechanism of Ti/Cu electron beam welding[J]. Materials & Design, 2017, 121: 51 − 60.

    [12]

    Chen G Q, Zhang B G, Liu W, et al. Influence of electron-beam superposition welding on intermetallic layer of Cu/Ti joint[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(10): 2416 − 2420. doi: 10.1016/S1003-6326(11)61479-9

    [13]

    Shiue R K, Wu S K, Chan C H. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys[J]. Journal of Alloys and Compounds, 2004, 372(1-2): 148 − 157.

    [14]

    Shiue R K, Wu S K, Chan C H. Infrared brazing Cu and Ti using a 95Ag-5Al braze alloy[J]. Metallurgical & Materials Transactions A, 2004, 35(10): 3177 − 3186.

    [15]

    Kimura M. Effect of friction pressure on joining phenomena of friction welds between pure titanium and pure copper[J]. Science and Technology of Welding and Joining, 2011, 16(5): 392 − 399. doi: 10.1179/1362171811Y.0000000009

    [16]

    Meshram S D, Mohandas T, Reddy G M. Friction welding of dissimilar pure metals[J]. Journal of Materials Processing Technology, 2007, 184(1-3): 330 − 337. doi: 10.1016/j.jmatprotec.2006.11.123

    [17]

    Kahramana N, Gulenc B, Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process [J]. Journal of Materials Processing Technology, 2005, 169: 67-71.

    [18]

    Song Minxiao, Zhao Xihua, Guo Wei, et al. Diffusion bonding of Ti-6Al-4V to ZQSn10-10 in vacuum[J]. China Welding, 2007, 12(1): 1 − 5.

    [19]

    Aydin K, Kaya Y, Kahraman N. Experimental study of diffusion welding/bonding of titanium to copper[J]. Materials & Design, 2012, 37(5): 356 − 368.

    [20]

    Guo W, Zhao X H, Song M X, et al. Diffusion bonded transition joint of TC4 to QAl10-3-1.5[J]. China Welding, 2005, 14(2): 109 − 112.

    [21]

    Wu B S, Dong H G, Li P, et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment[J]. Journal of Materials Processing Technology, 2022, 305: 117595. doi: 10.1016/j.jmatprotec.2022.117595

    [22]

    Li P, Li C, Dong H G, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2022, 909: 164698. doi: 10.1016/j.jallcom.2022.164698

    [23]

    Lei Y, Hu S P, Yang T L, et al. Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic[J]. Journal of Materials Processing Technology, 2020, 278: 116455. doi: 10.1016/j.jmatprotec.2019.116455

    [24]

    Du Y J, Xiong J T, Jin F, et al. Microstructure evolution and mechanical properties of diffusion bonding Al5(TiZrHfNb)95 refractory high entropy alloy to Ti2AlNb alloy[J]. Materials Science & Engineering A, 2021, 802: 140610.

    [25] 刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究[D]. 兰州: 兰州理工大学, 2016.

    Liu Yulin. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel[D]. Lanzhou: Lanzhou University of Technology, 2016.

    [26]

    Ding W, Liu N, Fan J C, et al. Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer[J]. Intermetallics, 2021, 129: 107027. doi: 10.1016/j.intermet.2020.107027

    [27]

    Jin X, Zhou Y, Zhang L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Materials & Design, 2018, 143: 49 − 55.

    [28]

    Jiang H, Han K M, Gao X X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Materials & Design, 2018, 142: 101 − 105.

    [29]

    Liu Y, Luo Y, Zhao D, et al. Interfacial behavior and joint performance of high-entropy alloy CoCrFeMnNi and pure Cu joints obtained by vacuum diffusion welding[J]. Journal of Mechanical Engineering, 2017, 53(2): 84 − 91. doi: 10.3901/JME.2017.02.084

    [30]

    Li P, Sun H T, Dong H G, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Materials Science & Engineering, A, 2021, 814: 141211.

    [31]

    Hawkyard J B, Eaton D, Johnson W. The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the "mushrooming" of flat-ended projectiles[J]. International Journal of Mechanical Sciences, 1968, 10(12): 929 − 930. doi: 10.1016/0020-7403(68)90048-9

    [32]

    Yeh J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759 − 1771. doi: 10.1007/s11837-013-0761-6

    [33] 孙浩田. AlCoCrFeNi2.1高熵合金扩散连接工艺及机理研究[D]. 大连: 大连理工大学, 2021.

    Sun Haotian. Process and mechanism for diffusion bonding of AlCoCrFeNi2.1 high entropy alloy[D]. Dalian: Dalian University of Technology, 2021.

图(14)  /  表(5)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  24
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 网络出版日期:  2024-06-19
  • 刊出日期:  2024-09-24

目录

    /

    返回文章
    返回