Advanced Search
YU Xi, LI Qi, CHANG Ronghui, QIN Binhao, ZHANG Yupeng, YIN Limeng, WANG Haiyan. Influence of welding process parameters on the microstructure and shear strength of TA15/304SS vacuum diffusion welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 64-73. DOI: 10.12073/j.hjxb.20230630001
Citation: YU Xi, LI Qi, CHANG Ronghui, QIN Binhao, ZHANG Yupeng, YIN Limeng, WANG Haiyan. Influence of welding process parameters on the microstructure and shear strength of TA15/304SS vacuum diffusion welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 64-73. DOI: 10.12073/j.hjxb.20230630001

Influence of welding process parameters on the microstructure and shear strength of TA15/304SS vacuum diffusion welded joints

More Information
  • Received Date: June 29, 2023
  • Available Online: March 08, 2024
  • A study was conducted on the dissimilar metal connection and joint between TA15 titanium alloy and 304 stainless steel. The experimental results show that at welding temperatures of 850-950 ℃, the diffusion zone of the joint (β-Ti) District and (α + β) Ti biphasic region increases with the increase of temperature, element diffusion is more complete, joint pores gradually decrease, and an increasing number of layered products are observed. The layered products are mainly interface layers composed of intermetallic compounds, namely σ-Fe (1st layer), FeTi + Fe2Ti (2nd layer), FeTi + β-Ti (3rd layer) and β-Ti (4th layer). When the welding temperature is 900 ℃, the welded joint reaches its maximum shear strength of 108MPa. As the welding time increases, the microstructure and composition of the welded joint are similar to those of the welding temperature parameter joint, but the influence of welding time on the shear strength of the joint is relatively small. When the welding time is 80 minutes, the shear strength reaches its maximum value, and the fracture surface exhibits a brittle ductile mixed fracture feature dominated by toughness.

  • [1]
    李兴无, 沙爱学, 张旺峰, 等. TA15合金及其在飞机结构中的应用前景[J]. 钛工业进展, 2003(Z1): 90 − 94.

    Li Xingwu, Sha Aixue, Zhang Wangfeng, et al. TA15 alloy and its application prospect in aircraft structure[J]. Progress in Titanium Industry, 2003(Z1): 90 − 94.
    [2]
    El-Egamy S S, Badaway W A. Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions[J]. Journal of Applied Electrochemistry, 2004, 34: 1153 − 1158.
    [3]
    李宁, 王刚, 王廷, 等. Inconel 718镍基合金与304不锈钢电子束焊接[J]. 焊接学报, 2019, 40(2): 82 − 85.

    Li Ning, Wang Gang, Wang Ting, et al. Weldability of Inconel 718 and 304 stainless steel by electron beam welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 82 − 85.
    [4]
    Naveen Kumar N, Janaki Ram G D, Bhattacharya S S, et al. Spark plasma welding of austenitic stainless steel AISI 304L to commercially pure titanium[J]. Transactions of the Indian Institute of Metals, 2015, 68: 289 − 297. doi: 10.1007/s12666-015-0589-6
    [5]
    Hao X, Dong H, Li S, et al. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire[J]. Journal of Materials Processing Technology, 2018, 257: 88 − 100. doi: 10.1016/j.jmatprotec.2018.02.020
    [6]
    牛小男, 崔丽, 王鹏, 等. 镍铝青铜过渡层对钛合金/不锈钢异种材料激光焊接头组织与力学性能的影响[J]. 焊接学报, 2022, 43(1): 42 − 47.

    Niu Xiaonan, Cui Li, Wang Peng, et al. Effect of nickel aluminum bronze transition layer on microstructure and mechanical properties of laser welded titanium alloy/stainless steel joint[J]. Transactions of the China Welding Institution, 2022, 43(1): 42 − 47.
    [7]
    Zhao Yongtao, Hu Yuqing, Dong Junhui, et al. The effect of welding materials on 1Cr18Ni9Ti and 2Cr13 steel welded joints electrochemical properties[J]. China Welding, 2022, 31(3): 42 − 47.
    [8]
    苗玉刚, 林志成, 邹俊攀, 等. 旁路分流电弧钎焊钛/钢异种金属接头特性分析[J]. 焊接学报, 2019, 40(9): 99 − 103.

    Miao Yugang, Lin Zhicheng, Zou Junpan,et al. Characteristic of titanium/steel dissimilar metals joint brazed by bypass-current arc welding[J]. Transactions of the China Welding Institution, 2019, 40(9): 99 − 103.
    [9]
    Ghosh M, Chatterjee S. Characterization of transition joints of commercially pure titanium to 304 stainless steel[J]. Materials Characterization, 2002, 48(5): 393 − 399. doi: 10.1016/S1044-5803(02)00306-6
    [10]
    Velmurugan C, Senthilkumar V, Sarala S, et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel[J]. Journal of Materials Processing Technology, 2016, 234: 272 − 279. doi: 10.1016/j.jmatprotec.2016.03.013
    [11]
    周荣林, 何鹏, 李小强, 等. 钛合金/不锈钢网的扩散连接[J]. 宇航材料工艺, 1999(1): 46 − 50. doi: 10.3969/j.issn.1007-2330.1999.01.010

    Zhou Ronglin, He Peng, Li Xiaoqiang, et al. Diffusion bonding of titanium alloy/stainless steel mesh[J]. Aerospace Materials Technology, 1999(1): 46 − 50. doi: 10.3969/j.issn.1007-2330.1999.01.010
    [12]
    He P, Zhang J H., Li X Q. Diffusion bonding of titanium alloy to stainless steel wire mesh[J]. Materials Science and Technology, 2001, 17(9): 1158 − 1162. doi: 10.1179/026708301101511112
    [13]
    Vigraman T, Ravindran D, Narayanasamy R. Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti–6Al–4V and AISI 304L[J]. Materials & Design, 2012, 36(4): 714 − 727.
    [14]
    高旺旺. TA2/S316扩散焊接头组织与性能研究[D]. 济南: 山东大学, 2020.

    Gao Wangwang. Study on the structure and properties of TA2/S316 diffusion welded joint [D]. Jinan: Shandong University, 2020.
    [15]
    李明兵, 王新南, 商国强, 等. 近α型、(α + β)型和近β型钛合金的高温力学性能[J]. 金属热处理, 2022, 47(11): 199 − 205.

    Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. High temperature mechanical properties of near-α type, (α + β) type and near-β type titanium alloy[J]. Heat Treatment of Metals, 2022, 47(11): 199 − 205.
    [16]
    Nakajima H, Koiwa M. Diffusion in titanium[J]. ISIJ International, 1991, 31(8): 757 − 766. doi: 10.2355/isijinternational.31.757
    [17]
    Mukherjee A B, Laik A, Kain V, et al. Shrinkage-stress assisted diffusion bonds between titanium and stainless steel: a novel technique[J]. Journal of Materials Engineering and Performance, 2016, 25: 4425 − 4436. doi: 10.1007/s11665-016-2284-0
    [18]
    Kumar R R, Gupta R K, Sarkar A, et al. Vacuum diffusion bonding of α-titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics[J]. Materials Characterization, 2022, 183: 111607. doi: 10.1016/j.matchar.2021.111607
    [19]
    Zhong Z, Hinoki T, Nozawa T, et al. Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer[J]. Journal of Alloys and Compounds, 2010, 489(2): 545 − 551. doi: 10.1016/j.jallcom.2009.09.105
    [20]
    姚尚君, 苗鑫, 陈思杰, 等. 焊接温度对钛/钢复合管瞬时液相扩散焊接头组织与性能的影响[J]. 机械工程材料, 2023, 47(2): 33 − 38. doi: 10.11973/jxgccl202302006

    Yao Shangjun, Miao Xin, Chen Sijie, et al. Effect of welding temperature on microstructure and properties of instantaneous liquid diffusion welding head of titanium/steel composite pipe[J]. Materials for Mechanical Engineering, 2023, 47(2): 33 − 38. doi: 10.11973/jxgccl202302006
    [21]
    Kundu S, Sam S, Chatterjee S. Evaluation of interface microstructure and mechanical properties of the diffusion bonded joints of Ti–6Al–4V alloy to micro-duplex stainless steel[J]. Materials Science and Engineering:A, 2011, 528(15): 4910 − 4916. doi: 10.1016/j.msea.2011.02.050
    [22]
    杜正勇, 李宇轩, 刘煜纯, 等. 铜/钢异种金属焊接技术研究现状[J]. 焊接, 2023(9): 1 − 23.

    Du Zhengyong, Li Yuxuan, Liu Yuchun, et al. Research status of copper/steel dissimilar metal welding[J]. Welding & Joining, 2023(9): 1 − 23.
    [23]
    钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006.

    Zhong Qunpeng, Zhao Zihua. Fracture Science[M]. Beijing: Higher Education Press, 2006.
    [24]
    郭峰, 李志. 断裂韧度与钢组织性能的关系[J]. 失效分析与预防, 2007, 2(4): 59 − 64.

    Guo Feng, Li Zhi. Relationship between fracture toughness and steel microstructure[J]. Failure Analysis and Prevention, 2007, 2(4): 59 − 64.
  • Related Articles

    [1]GAO Chao, HUANG Chunyue, LIANG Ying, LIU Shoufu, ZHANG Huaiquan. Stress analysis and optimization of POP stacked solder joints under thermal cyclic load[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 74-82. DOI: 10.12073/j.hjxb.20220330001
    [2]LIU Xiyang<sup>1,2</sup>, SUN Fenglian<sup>1</sup>, ZHAO Yumin<sup>2</sup>, XU Kegui<sup>2</sup>, WANG Yizhe<sup>2</sup>. Analysis of arc stability of self-shielded flux-cored wire laser-arc hybrid[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 17-23. DOI: 10.12073/j.hjxb.2018390167
    [3]GUO Wei, GUO Ning, DU YongPeng, WANG Fu, FENG Jicai. Effect of different underwater environment media on composition and temperature of underwater welding arc plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 13-16.
    [4]YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44.
    [5]LIU Min, LI Zhining, ZHANG Yingtang, FAN Hongbo. Sensitivity analysis of arc cutting parameters based on probability system of ANSYS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 88-92.
    [6]CHENG Fangjie, HU Shenghui, GAO Wenbin, DENG Caiyan, WANG Dongpo, JING Hongyang. Diffusible hydrogen content and microstructure characteristic in the joint by underwater shielded metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(9): 45-48.
    [7]ZHANG Tianli, LI Zhuoxin, JING Hongyang, LI Guodong, LI Hong, SONG Shaopeng. Analysis and evaluation of arc stability of self-shielded fluxcored wire in all-position welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 99-102.
    [8]LI Xiaoquan, YANG Zonghui, ZHAO Zhiguo. Analysis of improving stability of welding technology by applying auxiliary electric field between slag and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 17-20.
    [9]LI Peilin, LU Hao. Sensitivity analysis and prediction of double ellipsoid heat source parameters[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 89-91,95.
    [10]Jiao Xiangdong, Pan Jiluan, Zhang Hua. A. C. MAG Welding Arc Stability and Its Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 49-55.
  • Cited by

    Periodical cited type(4)

    1. 常云龙,张洪旭,关子奇,刘晓光. 尖角磁场对TIG电弧及焊缝成形的影响. 沈阳工业大学学报. 2021(05): 505-508 .
    2. 刘海华,陈豪杰,李亮玉,王天琪. 外加横向磁场对304不锈钢焊接熔池影响机理分析. 焊接学报. 2019(03): 71-75+84+164 . 本站查看
    3. 刘海华,卓义民,李亮玉,岳建锋. 外加磁场对薄壁零件堆焊层形貌的影响. 焊接学报. 2018(05): 47-50+131 . 本站查看
    4. 佘律波,王少刚,魏艳红. 焊接过程多场耦合模拟研究进展. 航空制造技术. 2017(15): 64-69 .

    Other cited types(11)

Catalog

    Article views (180) PDF downloads (52) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return