高级检索
王小伟, 杨东青, 李晓鹏, 王磊, 王克鸿. AZ31Mg/2A12Al爆炸复合板界面组织与性能[J]. 焊接学报, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
引用本文: 王小伟, 杨东青, 李晓鹏, 王磊, 王克鸿. AZ31Mg/2A12Al爆炸复合板界面组织与性能[J]. 焊接学报, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
WANG Xiaowei, YANG Dongqing, LI Xiaopeng, WANG Lei, WANG Kehong. Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
Citation: WANG Xiaowei, YANG Dongqing, LI Xiaopeng, WANG Lei, WANG Kehong. Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001

AZ31Mg/2A12Al爆炸复合板界面组织与性能

Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding

  • 摘要: 镁合金板上复合铝合金板对拓宽镁合金的使用范围具有重要意义. 采用爆炸焊接进行了镁合金板和铝合金板工艺试验,并制成镁合金和铝合金复合板. 使用光学显微镜、扫描电子显微镜观察焊后复合板结合界面处的微观形貌,分析了界面形成过程. 使用显微硬度计和剪切试验机测量了复合板结合界面处的硬度和抗剪强度. 结果表明,经爆炸焊接后,复合板界面熔化区发生了冶金结合,对应的组织为Al3Mg2和Al12Mg17金属间化合物的混合物. 熔化区域硬度为126 HV, 较基板硬度有明显升高(铝合金110 HV,镁合金70 HV). 结合界面处同一取样方向上,试件抗剪强度存在差异:x轴方向取样的剪切件强度呈现出先增加后减小的变化趋势,其平均值分别为112.3 MPa (垂直爆炸方向),87.0 MPa (平行爆炸方向);y轴方向取样的各剪切件强度基本相当,平均值分别为56.5 MPa (垂直爆炸方向),62.0 MPa (平行爆炸方向).

     

    Abstract: To compound aluminum alloy plate on the magnesium alloy plate is of great significance to broaden the application range of magnesium alloy. The compounding process test of magnesium alloy plate and aluminum alloy plate was carried out by explosive welding, and the magnesium alloy and aluminum alloy composite plate was fabricated by explosive welding. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe and study the micro-morphology of the bonding interface of the composite board, and the formation process of the interface was analyzed. The hardness and shear strength at the bonding interface of the composite board were measured using a microhardness tester and a shear test machine. The results showed that the melting zone of the composite plate interface fabricated by explosive welding occurred solidified melts, and the structure was a mixture of Al3Mg2 and Al12Mg17 intermetallic compounds. The hardness of the melting zone was 126 HV, which was significantly higher than the substrate hardness (Al alloy 110 HV, Mg alloy 70 HV). There were differences in the shear strength of the specimens in the same sampling direction: the shear strength of the specimens cut along X axis shown a trend of first increasing and then decreasing, and the average value of the shear strength were 112.3 MPa (vertical to the explosion direction) and 87.0 MPa (parallel to the explosion direction); The shear strength of the specimens in the Y-axis direction was basically equivalent, which the value of the shear strength in average were 56.5 MPa (vertical to the explosion direction) and 61.0 MPa (parallel to the explosion direction).

     

/

返回文章
返回