高级检索

水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析

李志刚, 祝林, 黄卫, 徐翔, 叶建雄

李志刚, 祝林, 黄卫, 徐翔, 叶建雄. 水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析[J]. 焊接学报, 2021, 42(4): 36-41. DOI: 10.12073/j.hjxb.20200517001
引用本文: 李志刚, 祝林, 黄卫, 徐翔, 叶建雄. 水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析[J]. 焊接学报, 2021, 42(4): 36-41. DOI: 10.12073/j.hjxb.20200517001
LI Zhigang, ZHU Lin, HUANG Wei, XU Xiang, YE Jianxiong. Study on dynamic evolution and acoustic pulse of bubbles in underwater welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 36-41. DOI: 10.12073/j.hjxb.20200517001
Citation: LI Zhigang, ZHU Lin, HUANG Wei, XU Xiang, YE Jianxiong. Study on dynamic evolution and acoustic pulse of bubbles in underwater welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 36-41. DOI: 10.12073/j.hjxb.20200517001

水下湿法药芯焊丝焊接气泡动态演变与其声脉冲分析

基金项目: 国家自然科学基金资助项目(51665016)
详细信息
    作者简介:

    李志刚,博士,副教授;主要从事焊接机器人及焊接自动化方面的研究;Email:gordon7456@163.com.

  • 中图分类号: TG 456.5

Study on dynamic evolution and acoustic pulse of bubbles in underwater welding

  • 摘要: 水下湿法药芯焊丝焊接(FCAW)以操作适用性好等优点在海洋设施维修中占有重要地位,焊接区域周围动态变化的气泡生长会影响焊接电弧的稳定性. 文中通过搭建水下湿法焊接试验平台,进行了湿法药芯焊丝焊接试验,利用传感器对焊接过程中的电弧电流电压信号,气泡声信号以及气泡高速图像进行了同步采集;研究了气泡声信号与气泡高速图像的对照关系,并对气泡声信号与电弧电流电压信号进行同步分析,获得了不同电弧燃烧状态下的气泡演变行为,以气泡声信号的变化来反映气泡演变对水下湿法焊接电弧燃烧的稳定状态的影响. 结果表明,气泡声信号可以清晰地反映焊接电弧燃烧的各种状态,能对不同气泡演变模式进行分类,并可从中分析其与电弧燃烧特性的对应关系.
    Abstract: Underwater wet flux cored wire welding (FCAW) plays an important role in the maintenance of marine facilities due to its good operational applicability and other advantages. The dynamically changing bubble growth around the welding area will affect the stability of the welding arc. An underwater wet welding test platform was built and wet flux cored wire welding experiments was conducted. Sensors was used to synchronously collect the arc current and voltage signal, the bubble sound signal and the bubble high-speed image in the welding process The contrast relationship between the bubble acoustic signal and the high-speed bubble image was studied. The bubble acoustic signal and the arc current voltage signal were analyzed simultaneously. The evolution behavior of the bubble under different arc combustion conditions was obtained. The effect of bubble evolution on the steady state combustion of underwater wet welding arc was reflected from the change of bubble acoustic signal. The results show that the bubble acoustic signals can clearly reflect the various states of welding arc combustion, can classify different bubble evolution patterns, and analyze the corresponding relationship with arc combustion characteristics.
  • 镍基合金材料凭借着良好的力学性能、耐蚀性能、抗氧化性能等,在核工业领域得到了广泛应用[1]. 目前在国内二代加、三代核电工程核岛主设备制造中应用的镍基合金焊丝主要包括ERNiCrFe-7,ERNiCrFe-7A两类,其中以Mn,Nb为主要合金元素的ERNiCrFe-7A型焊丝应用最为普遍[2],但相关研究成果及制造经验表明该类型焊丝熔敷金属存在350 ℃高温强度不足的问题. Mo,Nb均是镍基高温合金中使用较为广泛的元素,由于原子半径较大,可以显著增大镍基固溶体晶格常数,并使屈服强度显著增大,同时也会对组织产生较大的影响,促进碳化物、拓扑密排相(TCP)等的形成[3]. 目前国内外众多学者致力于镍基高温合金材料研究,关于Mo,Nb元素在核电用镍基合金焊丝熔敷金属中的作用研究较少[4-6]. 为解决目前ERNiCrFe-7A型焊丝熔敷金属强度不足的问题,文中试制了一种以Mo,Nb为主要合金元素的镍基焊丝,采用JMatPro软件、光学显微镜(optical microscope, OM)、扫描电子显微镜(scanning electron microscope, SEM)、透射电子显微镜(transmission electron microscope, TEM)等分析手段对焊丝气体保护钨极电弧焊(gas tungsten arc welding, GTAW)熔敷金属组织、力学性能(室温、350 ℃高温拉伸性能)进行了分析.

    熔敷金属试验采用Q235钢板作为母材,规格为300 mm × 200 mm × 40 mm. 堆焊的熔敷金属试样尺寸约为200 mm × 100 mm × 25 mm,具体示意图如图1所示. 采用GTAW焊接工艺进行堆焊,焊接工艺参数如表1所示.

    图  1  熔敷金属制备示意图
    Figure  1.  Schematic diagram of deposited metal sample preparation
    表  1  GTAW工艺参数
    Table  1.  GTAW parameters
    焊接电流I/A电弧电压U/V焊接速度v1/(mm·min−1)送丝速度v2/(mm·min−1)保护气体层温控制T/℃
    22013.51201 150纯Ar ≤ 150
    下载: 导出CSV 
    | 显示表格

    熔敷金属试验用焊接材料为试制的镍基合金气体保护焊丝,规格为$\phi $1.2 mm,焊丝化学成分如表2所示.

    表  2  试验用焊丝的化学成分(质量分数,%)
    Table  2.  Chemical compositions of experimental wire
    CSiMnSPNbFeMoAlTiCrNi
    0.020.070.960.0010.0022.019.445.060.280.2029.02余量
    下载: 导出CSV 
    | 显示表格

    采用JMatPro软件镍基合金数据库对试制焊丝的化学成分进行平衡相图计算. 在堆焊熔敷金属上切取微观组织分析试样,应在未经受多次焊接热循环的位置取样,通过磨制、抛光和腐蚀制成熔敷金属横截面金相试样. 利用OLYMPUS GX51型光学显微镜对于熔敷金属金相组织进行了观察,利用ZEISS EVO18型扫描电子显微镜进一步放大观察试样表面微观组织结构和断口形貌,并配合OX-FORD INCA能谱仪进行了区域成分分析. 采用JXA-8230型电子探针对组织进行了元素面分布分析. 采用Talos 200 X型原位多功能透射电镜观察分析了枝晶间第二相的形貌与结构. 借助AGS-X100KN电子拉伸试验机分别在室温、350 ℃下对熔敷金属进行拉伸试验.

    采用JMatPro软件以及相应的镍基合金数据库进行了热力学平衡相图计算,结果如图2所示.试验焊丝成分对应的初凝和终凝温度分别为1 340 和1 230 ℃,结晶温度区间约为110 ℃. 基体γ相固溶体在凝固结晶之后先后析出MC碳化物、σ相、δ相、M23C6型碳化物等,对应的析出温度分别为1 220,985,940,902 ℃,其中大部分析出物的析出量随着温度的降低不断增加,而MC碳化物、σ相在析出后分别在902,691 ℃分解消失. 凝固结晶后最终的组织包括γ 相、μ相、δ相、M23C6型碳化物等.

    图  2  基于焊丝化学成分的平衡相JMatPro计算结果
    Figure  2.  Calculated results of equilibrium phases based on experimental wire chemical composition by JMatPro

    图3为熔敷金属中未经受多次热循环部位的典型组织. 由图3a可见,组织主要为柱状晶γ相,箭头标记位置为枝晶干γ相;图3b图3a中虚线框标记区域的局部放大,在枝晶间的浅色区域芯部存在较多的第二相,呈连续分布的条状、断续分布不规则块状、点状等不同形态分布.图4为熔敷金属组织SEM微观形貌. 表3图4中标记各标记区域、点的EDS分析结果. 图4中的A区域为枝晶干γ相,B区域为富Mo, Nb的γ相,该偏析区域宽度约在5 ~ 10 μm内. 在偏析区域B芯部存在灰黑色不规则片状C类第二相与灰白色骨架状D类第二相共生的组织,C类第二相富Mo,Cr元素,分别在17%,35%左右,结合文献[7]可知,C类第二相应为σ相,位于共生组织的芯部. D类第二相富含Nb,Mo,分别在20%,10%左右,结合相关文献[8-11]可知,D类第二相应为(Ni,Cr,Fe)2(Nb,Mo)型Laves相,位于共生组织边缘. 此外,还存在不大于1 μm的细小E类第二相,为富Nb,Ti的MC型复合碳化物.

    图  3  熔敷金属金相组织
    Figure  3.  Metallographic microstructure of deposited metal. (a) typical field; (b) detailed view as marked in Fig.3a
    图  4  熔敷金属SEM微观形貌
    Figure  4.  Microstructure of deposited metal by SEM
    表  3  熔敷金属各典型相能谱分析结果(质量分数,%)
    Table  3.  EDS results of typical phases in deposited metal
    分析区域NbMoTiNiCrFe
    A0.874.640.0952.0230.1711.54
    B2.696.910.5048.4130.409.11
    C15.1717.1832.1735.317.13
    C25.3217.2131.3135.117.23
    D122.069.690.0832.9820.165.65
    D219.2110.6933.2521.926.35
    E30.013.739.2314.2711.783.29
    下载: 导出CSV 
    | 显示表格

    图5为枝晶间偏析区芯部共晶组织背散射像. 图6为元素分布EPMA面扫描分析结果元素面分布情况. 由图6可进一步说明Mo,Nb元素在枝晶间产生了明显的偏析. 灰色片状的富Cr,Mo元素的σ相分布在共生组织的芯部,沿灰色相外围分布有富Nb,Mo元素的Laves相与富Nb,Ti的细小MC碳化物.

    图  5  共晶组织背散射像
    Figure  5.  Eutectic microstructure BSE images
    图  6  元素分布EPMA面扫描分析结果
    Figure  6.  Analysis results of element distribution by EPMA

    图7为枝晶间析出相的TEM像及选区电子衍射花样(selected area electron diffraction,SAED)结果. 图7a为熔敷金属中枝晶间析出相的TEM暗场像,图7b图7c为对应析出相的选区衍射斑点. 由图7b可知,该相为σ相(MoCrFe),四方结构,a = b = 0.908 nm,c = 0.475 nm,c/a = 0.52,每个晶胞约30个原子,尺寸大小在0.5 ~ 5 μm范围内. 由图6c可知,该相为MC碳化物,其中M为Nb,Ti等元素,面心立方结构,晶格常数为0.45 nm,尺寸大小在0.3 ~ 0.6 μm范围内.

    图  7  熔敷金属第二相TEM像及对应的选区电子衍射结果
    Figure  7.  TEM images of precipitates and SAED results by TEM. (a) dark field image; (b) σ SAED;(c) MC SAED

    按照AWS B4.0M:2000(R2010) Stansard Methods for Mechanical Testing of Welds, ASTM E21−2009 Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials标准对熔敷金属分别进行了室温、350 ℃高温拉伸试验,结果表明熔敷金属的室温抗拉强度、屈服强度分别为775 ,530 MPa,塑性指标断后伸长率、断面收缩率均在30%以上,性能优于文献[12]中的52M-B熔敷金属性能. 图8为室温拉伸断口形貌. 由图8可见,断口微观形貌主要特征为沿晶分布的韧窝,在韧窝底部存在密集的析出相. 350 ℃高温熔覆金属的抗拉强度、屈服强度分别为672 ,465 MPa,塑性指标断口伸长率、断面收缩率均在30%以上,这表明熔敷金属具有较高的强度和较好的塑性.

    图  8  室温拉伸断口SEM形貌
    Figure  8.  Fracture surface morphology of tensile specimen at room temperature by SEM

    (1)试制镍基合金焊丝GTAW熔敷金属金相组织主要为柱状晶γ相,在枝晶间存在Mo,Nb元素的偏析区域,偏析区域芯部存在σ相、MC碳化物和Laves相等多相共生的组织.

    (2)枝晶间芯部的析出相包括富Nb,Ti元素的(Nb,Ti)C复合碳化物,富Mo,Cr元素的MoCrFe型σ相,富Nb,Mo的(Ni,Cr,Fe)2(Nb,Mo)型Laves相.

    (3)试制镍基合金焊丝GTAW熔敷金属室温、350 ℃高温下的抗拉、屈服强度较高,塑性较好,室温拉伸断口形貌为沿晶分布的韧窝.

  • 图  1   水下湿法焊接试验系统

    Figure  1.   Underwater wet welding test system

    图  2   水听器示意图

    Figure  2.   Schematic diagram of hydrophone

    图  3   高速图像采集系统图

    Figure  3.   High-speed image acquisition system diagram

    图  4   起弧气泡生长阶段的图像及其声信号

    Figure  4.   Image and sound signal of the arcing bubble growth stage

    图  5   气泡不稳定生长段的图像及其声信号

    Figure  5.   Image and acoustic signal of the unstable growth segment of a bubble

    图  6   2个气泡迭代生长组合保护下的电弧燃烧

    Figure  6.   Two bubbles grow iteratively in combination under the protection of arc combustion. (a) time a; (b) time b

    图  7   气泡稳定生长阶段的电弧电信号及气泡声信号

    Figure  7.   Electric arc signal and the sound signal of the bubble in the stable growth stage. (a) welding current; (b) arc voltage; (c) sound pressure

    图  8   气泡稳定生长阶段的图像

    Figure  8.   Image of the stable stage of bubble growth

    图  9   气泡稳定生长阶段的气泡声压信号

    Figure  9.   Bubble sound pressure signal in the stable growth stage of the bubble

    图  10   气泡稳定生长阶段的气泡大小对比

    Figure  10.   Comparison of bubble size at the stage of stable bubble growth. (a) bubble 1; (b) bubble 2; (c) bubble 3

    图  11   不同电弧电压下的不稳定阶段气泡破裂过程

    Figure  11.   Process of bubble bursting in the unstable stage at different arc voltages

    图  12   不同电弧电压下的不稳定阶段气泡声信号

    Figure  12.   Bubble acoustic signals at different arc voltages in unstable phases. (a) welding voltage 32 V; (b) welding voltage 36 V

    图  13   不同电弧电压下的稳定阶段气泡图像

    Figure  13.   Bubble image of steady stage at different arc voltages

    图  14   不同电弧电压下的稳定阶段气泡声信号

    Figure  14.   Bubble acoustic signals at different arc voltages at steady stages. (a) welding voltage 32 V; (b) welding voltage 36 V

  • [1] 韩凤起, 李志尊, 孙立明, 等. 水下湿法手工自蔓延焊接技术[J]. 焊接学报, 2019, 40(7): 149 − 155.

    Han Fengqi, Li Zhizun, Sun Liming, et al. Research on underwater wet manual SHS welding[J]. Transactions of the China Welding Institution, 2019, 40(7): 149 − 155.

    [2]

    Li H L, Liu D, Tang D Y, et al. Microstructure and mechanical properties of E36 steel joint welded by underwater wet welding[J]. China Welding, 2016, 25(1): 30 − 35.

    [3]

    Chen H, Guo N, Feng J C, et al. Investigation of arc bubble affecting the arc stability and improvement of weld appearances using bubble constraint device in underwater wet welding[J]. Materials Science Forum, 2019, 4901: 215 − 221.

    [4] 王建峰, 孙清洁, 张顺, 等. 基于电弧气泡调控的水下湿法焊接稳定性研究[J]. 机械工程学报, 2018, 54(14): 50 − 57.

    Wang Jianfeng, Sun Qingjie, Zhang Shun, et al. Investigation on underwater wet welding process stability based on the arc bubble control[J]. Journal of Mechanical Engineering, 2018, 54(14): 50 − 57.

    [5]

    Yang Q Y, Han Y F, Jia C B, et al. Impeding effect of bubbles on metal transfer in underwater wet FCAW[J]. Journal of Manufacturing Processes, 2019, 45: 682 − 689. doi: 10.1016/j.jmapro.2019.08.013

    [6]

    Oliveira F R, Soares W R, Bracarense A Q. Study correlating the bubble phenomenon and electrical signals in underwater wet welding with covered electrodes[J]. Welding International, 2015, 29(5): 363 − 371. doi: 10.1080/09507116.2014.932980

    [7]

    Zhao B, Chen J, Jia C B, et al. Numerical analysis of molten pool behavior during underwater wet FCAW process[J]. Journal of Manufacturing Processes, 2018, 32: 538 − 552.

    [8]

    Kobernik N V, Mikheev R S, Linnik A A, et al. Effect of the conditions of machine hidden arc welding with an additional hot additive (flux-cored electrode) on the formation of a joint weld[J]. Russian Metallurgy (Metally), 2018(13): 1249 − 1254.

    [9]

    Wang L L, Xie F X, Feng Y L, et al. Innovative methodology and database for underwater robot repair welding: A technical note[J]. ISIJ International, 2017, 57(1): 203 − 205. doi: 10.2355/isijinternational.ISIJINT-2016-407

    [10]

    Muktepavel V, Murzin V, Karpov V, et al. Research on welding and processing behavior of electrodes and features of their application in “wet” underwater arc welding[J]. Materials Science Forum, 2019, 4726: 913 − 920.

    [11]

    Guo N, Du Y P, Feng J C, et al. Study of underwater wet welding stability using an X-ray transmission method[J]. Journal of Materials Processing Technology, 2015, 225: 133 − 138. doi: 10.1016/j.jmatprotec.2015.06.003

图(14)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  60
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-16
  • 网络出版日期:  2020-11-12
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回