高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织

沈元勋1,李正林2,郝传勇2,张劲松2,龙伟民1

沈元勋1,李正林2,郝传勇2,张劲松2,龙伟民1. 银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织[J]. 焊接学报, 2017, 38(9): 75-78. doi: 10.12073/j.hjxb.20151124002
引用本文: 沈元勋1,李正林2,郝传勇2,张劲松2,龙伟民1. 银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织[J]. 焊接学报, 2017, 38(9): 75-78. doi: 10.12073/j.hjxb.20151124002

银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织

doi: 10.12073/j.hjxb.20151124002
  • 摘要: 以Ag-28Cu和Ag-9Pd-9Ga两种银基钎料钎焊C/SiC复合材料和Al2O3陶瓷与Ti55钛合金接头,考察了钎料和钎焊工艺对接头焊缝组织形貌变化影响. 结果表明,采用Ag-28Cu钎料在850~920 ℃温度区间钎焊C/SiC-Ti55和Al2O3-Ti55接头均在陶瓷基体近钎焊界面区域开裂,原因为Ti55合金中Ti元素大量溶解扩散并与铜反应生成的大量脆性Cu-Ti化合物恶化焊缝塑性. Ag-9Pd-9Ga钎料则可以获得完整接头,钎焊过程中Pd,Ga元素在Ti55侧钎焊界面富集并与Ti元素反应生成PdTi, Ti2Ga, Ti4Pd化合物的反应层,有效抑制了元素往焊缝中的溶解扩散.
  • [1] 张立同. 纤维增韧碳化硅陶瓷复合材料[M]. 北京: 化学工业出版社, 2009.[2] Kumar S, Kumar A, Shukla A,etal. Investigation of thermal expansion of 3D-stitched C-SiC composites[J]. Journal of the European Ceramic Society, 2009(29): 2849-2855.[3] Krenkel W, Berndt F. C/C-SiC composites for space applications and advanced frictionsystems[J]. Materials Science and Engineering: A, 2005(412): 177-181.[4] Schmidt S, Beyer S, Knabe H,etal. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004(55): 409-420.[5] 钱九红. 航空航天用新型钛合金的研究进展及应用[J]. 稀有金属, 2000, 24(3): 218-223.Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000, 24(3): 218-223.[6] Asthana R, Singh M. Joining of partially sintered alumina to alumina, titanium, Hastealloy and C-SiC composite using Ag-Cubrazes[J]. Journal of the European Ceramic Society, 2008(28): 617-631.[7] 薛行雁, 龙伟民, 黄继华, 等. (Ag-Cu-Ti)+(Ti+C)复合材料钎焊Cf/SiC复合材料与TC4钛合金[J]. 焊接, 2011(3): 60-63.Xue Xingyan, Long Weimin, Huang Jihua,etal. Brazing of Cf SiC and Ti alloy with Ag-Cu-Ti-(Ti+C) composite filler material[J]. Welding & Joining, 2011(3): 60-63.[8] Xiong J H, Huang J H, Zhang H,etal. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag-Cu-Ti active brazing alloy[J]. Materials Science and Engineering: A, 2010, 527(4-5): 1096-1101.[9] Singh M, Asthana R, Shpargel T P. Brazing of ceramic-matrix composites to Ti and Hastealloy using Ni-base metallic glass interlayers[J]. Materials Science and Engineering: A, 2008, 498: 19-30.[10] Cui B, Huang J H, Cai C,etal. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti-Zr-Cu-Ni)+W composite filler materials[J]. Composites Science and Technology, 2014, 97(16): 19-26.
  • 加载中
计量
  • 文章访问数:  244
  • HTML全文浏览量:  1
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24

银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织

doi: 10.12073/j.hjxb.20151124002

摘要: 以Ag-28Cu和Ag-9Pd-9Ga两种银基钎料钎焊C/SiC复合材料和Al2O3陶瓷与Ti55钛合金接头,考察了钎料和钎焊工艺对接头焊缝组织形貌变化影响. 结果表明,采用Ag-28Cu钎料在850~920 ℃温度区间钎焊C/SiC-Ti55和Al2O3-Ti55接头均在陶瓷基体近钎焊界面区域开裂,原因为Ti55合金中Ti元素大量溶解扩散并与铜反应生成的大量脆性Cu-Ti化合物恶化焊缝塑性. Ag-9Pd-9Ga钎料则可以获得完整接头,钎焊过程中Pd,Ga元素在Ti55侧钎焊界面富集并与Ti元素反应生成PdTi, Ti2Ga, Ti4Pd化合物的反应层,有效抑制了元素往焊缝中的溶解扩散.

English Abstract

沈元勋1,李正林2,郝传勇2,张劲松2,龙伟民1. 银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织[J]. 焊接学报, 2017, 38(9): 75-78. doi: 10.12073/j.hjxb.20151124002
引用本文: 沈元勋1,李正林2,郝传勇2,张劲松2,龙伟民1. 银基钎料活性钎焊C/SiC-Ti55与Al2O3-Ti55接头界面组织[J]. 焊接学报, 2017, 38(9): 75-78. doi: 10.12073/j.hjxb.20151124002
参考文献 (1)

目录

    /

    返回文章
    返回