高级检索

改进的Otsu法在焊接图像分割中的应用

齐继阳, 李金燕, 陆震云, 魏赛

齐继阳, 李金燕, 陆震云, 魏赛. 改进的Otsu法在焊接图像分割中的应用[J]. 焊接学报, 2016, 37(10): 97-100.
引用本文: 齐继阳, 李金燕, 陆震云, 魏赛. 改进的Otsu法在焊接图像分割中的应用[J]. 焊接学报, 2016, 37(10): 97-100.
QI Jiyang, LI Jinyan, LU Zhenyun, WEI Sai. Application of improved Otsu algorithm to welding image segmentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 97-100.
Citation: QI Jiyang, LI Jinyan, LU Zhenyun, WEI Sai. Application of improved Otsu algorithm to welding image segmentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 97-100.

改进的Otsu法在焊接图像分割中的应用

基金项目: 江苏省产学研前瞻性联合研究资助项目(BY2013066-02)

Application of improved Otsu algorithm to welding image segmentation

  • 摘要: 为把焊缝区域准确地从焊接图像中分离出来,以便进行焊接质量的在线分析,本文针对焊接图像灰度级多、信息量大、对比度低、图像部分细节模糊等特点提出了一种新的改进的Otsu法,在考虑类间方差和类内方差对图像分割效果影响的基础上,用方差信息代替均值信息,构建了焊接图像分割阈值算法,用以提高焊接图像的分割质量和图像实时处理的速度.实验结果表明,本文所提出的算法达到了很好的焊接图像分割效果,图像分割耗时短,相对于目前的图像分割方法具有明显的优越性,是一种有效的焊接图像阈值分割方法.
    Abstract: Because the welding image has too much gray level and information and serious interference from the arc, splash and others which reduces welding image contrast and blurs some image details, a newly-improved Otsu algorithm was proposedto accurately extract weld seam region from welding image.By replacing the mean value with variance, the algorithm was foundedto improve the image segmentation quality and reduce processing time, and the interclass variance and intraclass variance were also taken into considerations. The experimental results show that the proposed algorithm achieves good welding image segmentation effect with the less time. Compared with the other algorithms, it has obvious advantage and it is an effective and efficient algorithmof welding image segmentation.
  • [1] 许新征, 丁世飞, 史忠植. 图像分割的新理论和新方法[J]. 电子学报, 2010, 2(2A): 76-81. Xu Xinzheng, Ding Shifei, Shi Zhongzhi. New theories and methods of image segmentation[J]. Acta Electronica Sinica, 2010, 2(2A): 76-81.
    [2] 刘子腾, 白瑞林, 王秀平. 基于激光视觉的角焊缝图像特征点提取[J]. 焊接学报, 2016, 37(2): 89-93. Liu Ziteng, Bai Ruilin, Wang Xiuping. Image feature extraction of fillet weld based on laser vision[J].Transactions of the China Welding Institution, 2016, 37(2): 89-93.
    [3] Chen Y, Deng C X, Chen X X. An improved canny edge detection algorithm[J]. International Journal of Hybrid Information Technology, 2015, 8(10): 359-370.
    [4] Zhang X L, Li X F, Feng Y C. A medical image segmentation algorithm based on bi-directional region growing[J]. Optik, 2015, 126(20): 2398-2404.
    [5] Saha S, Maulik U. A new line symmetry distance based automatic clustering technique: Application to image segmentation[J]. International Journal of Imaging Systems and Technology. 2011, 21(1): 86-100.
    [6] 高飞, 王克鸿, 梁永顺, 等. 一种多尺度分形的弧焊熔池图像分割方法[J]. 焊接学报, 2011, 32(11): 33-36. Gao Fei, Wang Kehong, Liang Yongshun, et.al. A multi-scale fractal image segmentation method for arc welding pool[J]. Transactions of the China Welding Institution, 2011, 32(11): 33-36.
    [7] 佟彤, 蔡艳, 孙大为, 等. 基于有监督过渡区的焊缝X射线图像分割[J]. 焊接学报, 2014, 35(3): 101-104. Tong Dan, Cai Yan, Sun Dawei, et al. Segmentation of weld seam in X-ray images based on supervised transition region extraction[J]. Transactions of the China Welding Institution, 2014, 35(3): 101-104.
    [8] 郭建星, 刘松林. 一种改进的基于最大类间方差的图像分割方法[J]. 仪器仪表学报, 2005, 26(8): 665-666. Guo Jianxin, Liu Songlin. An improved image segmentation algorithm based on the Otsu method[J]. Chinese Journal of Scientific Instrument, 2005, 26(8): 665-666.
    [9] 褚巧龙. 基于Otsu的图像阈值分割算法的研究[D]. 秦皇岛: 燕山大学, 2011.
    [10] 付忠良. 图像阈值选取方法的构造[J]. 中国图像图形学报, 2000, 5(6): 466-469. Fu Zhongliang. The making of method for image threshold selection[J]. Journal of Image and Graphics, 2000, 5(6): 466-469.
    [11] 蔡梅艳, 吴庆宪, 姜长生. 改进Otsu法的目标图像分割[J]. 电光与控制, 2007, 14(6): 118-119. Cai Meiyan, Wu Qingxian, Jiang Changsheng. Target image segmentation based on modified Otsu algorithm[J]. Electronics Optics & Control, 2007, 14(6): 118-119.
    [12] 韩青松, 贾振红, 杨杰. 基于改进的Otsu算法的遥感图像阈值分割[J]. 激光杂志, 2010, 31(6): 33-34. Han Qingsong, Jia Zhenhong, Yang Jie. Remote sensing image thresholding segmentation based on the modified Otsu algorithm[J]. Laser Journal, 2010, 31(6): 33-34.
  • 期刊类型引用(14)

    1. 罗颖,张义凤,丁杰. 基于图像分割和边缘提取相融合的射线缺陷图像增强算法研究. 物联网技术. 2024(02): 29-32 . 百度学术
    2. 吴家洲,刘君,施佳文,张胜. 激光焊缝图像分割与颜色识别方法研究. 激光技术. 2023(05): 723-728 . 百度学术
    3. 郭亚玲,江泽标,彭鑫,扶祥祥,吴少康,权西平,杨希法. 二氧化碳致裂对煤孔隙结构影响的试验研究. 煤矿安全. 2022(07): 20-26 . 百度学术
    4. 马永力,曾瑄,黄志开. 数字碑帖图像的二值化算法研究. 湖北理工学院学报. 2022(04): 18-22+68 . 百度学术
    5. 齐继阳,张艳琼,刘亮. 基于机器视觉的零件毛刺检测. 机械设计与研究. 2021(02): 24-27 . 百度学术
    6. 戴漩领,茅云生,周永清. 基于改进分水岭的焊缝分割算法. 船舶工程. 2021(S1): 428-433 . 百度学术
    7. 黄静,蒋泽宁. 基于灰度拉伸和遗传算法的焊缝图像二值化算法. 智能计算机与应用. 2021(09): 99-102+107 . 百度学术
    8. 王思宇,高炜欣,张翔松. X射线焊缝图像缺陷检测算法综述. 热加工工艺. 2020(15): 1-8 . 百度学术
    9. 付浩龙,赵津,席阿行,刘东杰,刘子豪. 无人机视觉下基于改进OTSU的负障碍物检测. 计算机应用与软件. 2020(09): 105-110 . 百度学术
    10. 张斌,常森,王桔,王倩. 基于遗传算法的激光视觉焊缝特征点提取. 中国激光. 2019(01): 80-90 . 百度学术
    11. 齐继阳,李金燕. Feature extraction of welding defect based on machine vision. China Welding. 2019(01): 56-62 . 百度学术
    12. 王兴东,杨雅伦,孔建益,施毅. 基于区域优化的等厚对接焊缝图像二值化方法. 中国机械工程. 2019(14): 1756-1763 . 百度学术
    13. 黄靖,李俊男,刘丽桑,罗堪,夏正邦,王泽洲. 基于形态学重建与OTSU的极耳焊缝图像分割方法. 福建工程学院学报. 2019(04): 359-364 . 百度学术
    14. 卢斯伟,胡晓兵,文华,张波,杨雄. 基于双边滤波算法下的焊缝跟踪系统研究. 机械. 2017(07): 11-14+23 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  541
  • HTML全文浏览量:  7
  • PDF下载量:  215
  • 被引次数: 33
出版历程
  • 收稿日期:  2015-04-01

目录

    /

    返回文章
    返回