Thermodynamic coupling numerical simulation and mechanical properties analysis of TC4 laser welding
-
摘要:
为了准确预测TC4钛合金激光焊接过程的温度变化和焊接后的力学性能,文中通过ABAQUS子程序建立了激光焊温度场模型,对激光焊接温度场进行模拟分析,并研究了焊接过程中的温度变化及焊接后残余应力变化. 试验检测了焊接接头的硬度和表面残余应力,并分析了显微组织. 结果表明,当热循环温度峰值达到
2601 ℃时,熔池温度已显著高于液相线,熔池中无固相晶粒,主要呈现出材料熔化后凝固形成的少量柱状晶. 此外,越靠近焊缝的热影响区,晶粒越粗大,晶内马氏体的数量和密度也较高. 激光焊接后,焊缝区的显微硬度基本相同,表面显微硬度稍高,平均可达385 HV. 焊缝中间段沿焊接方向的纵向残余应力呈现均匀峰值,横向应力略小,纵向和横向中央平均应力误差分别为1.4%和2.9%,垂直焊缝方向的残余应力分布基本一致. 随后对焊接接头的力学性能进行了拉伸模拟研究,数值模拟得到的温度场和残余应力分布与试样焊后的组织形态和表面残余应力分布相符,拉伸试验和数值模拟的位移载荷变化数据相匹配,验证了激光焊接接头的温度场模型和拉伸断裂模型的可行性和准确性.Abstract:To accurately predict the temperature changes during the laser welding process of TC4 titanium alloy and the mechanical properties after welding, a laser welding temperature field model was established using ABAQUS subroutines. The temperature field during laser welding was simulated and analyzed, and the changes in temperature and residual stress during and after welding were studied. The hardness and surface residual stress of the welded joints were tested, and the microstructure was analyzed. The results showed that when the peak temperature of the thermal cycle reached
2601 ℃, the molten pool temperature was significantly higher than the liquidus line, there are no solid phase grains in the molten pool, but rather a small amount of columnar crystals formed after solidification. Additionally, the heat-affected zone near the weld had coarser grains, with higher quantity and density of martensite within the grains. After laser welding, the microhardness in the weld zone was consistent, with slightly higher surface microhardness, averaging 385 HV. The longitudinal residual stress along the welding direction showed a uniform peak in the middle of the weld, with slightly lower transverse stress. The average stress errors for the longitudinal and transverse central regions were 1.4% and 2.9%, respectively, and the residual stress distribution perpendicular to the weld direction was consistent. Subsequently, the mechanical properties of the welded joints were studied through tensile simulations. The temperature field and residual stress distribution obtained from numerical simulations matched the microstructure and surface residual stress distribution of the welded samples. The displacement-load data from tensile tests and numerical simulations also matched, proving the feasibility and accuracy of the laser welding temperature field model and the tensile fracture model.-
Keywords:
- laser welding /
- TC4 titanium alloy /
- numerical simulation /
- residual stress
-
-
表 1 TC4钛合金化学成分(质量分数,%)
Table 1 Chemical composition of TC4 titanium alloy
Al V Fe C N H O Ti 6.02 3.79 0.03 0.05 0.04 0.013 0.065 余量 表 2 激光焊接参数
Table 2 Laser welding parameters
激光功率
P/W焊接速度
v /(m∙min−1)氩气流速
Q/(L∙min−1)光斑直径
dmn / mm离焦量
df /mm3000 2 6 1.5 2.6 表 3 TC4 温度相关属性
Table 3 Temperature-related properties of TC4
温度
T/℃热导率
K/(W·(m·℃)−1)比热
C/(J·(kg·℃)−1)膨胀系数
α/(10−5℃−1)杨氏模量
E/GPa屈服强度
Rp0.2/MPa20 2001.2950 620 0.001919050 110 825 250 2494.7650 650 0.001924533 101 600 500 3454.2900 700 0.001930016 90 400 625 3372.0450 695 0.001935499 75 300 750 3481.7050 710 0.001935499 60 200 800 3563.9500 715 0.001938241 55 250 900 3618.7800 710 0.001940982 51 30 1000 3701.0250 720 0.001940982 50 35 1500 3714.7325 718 0.001946465 48 10 2000 3728.4400 717 0.001951948 45 5 2500 3742.1475 700 0.001960173 15 5 表 4 TC4 固有属性
Table 4 Inherent properties of TC4 titanium alloy
表 5 焊接接头的力学性能
Table 5 Mechanical properties of welded joints
力学性能 焊缝 母材 弹性模量 E/GPa 93.58 82.30 泊松比 μ 0.34 0.34 屈服强度 Rp0.2/MPa 748.84 997.00 硬化常数 B 812.00 998.00 硬化指数 n 0.47 0.44 表 6 各试样对应的应力三轴度
Table 6 Stress triaxiality corresponding to each specimen
区域 应力三轴度$ {\mathrm{\sigma }}^{*} $ R0 R4 R2 R1 母材 0.333 0.461 0.522 0.578 焊缝 0.333 0.455 0.515 0.574 表 7 焊接接头Johnson-Cook损伤模型参数表
Table 7 Johnson-Cook damage model parameters for welded joints
区域 断裂系数 D1 D2 D3 母材 −0.197 0.8251 − 1.9212 焊缝 −0.307 0.5133 − 1.0476 -
[1] Lu H F, Wang Z, Cai J, et al. Effects of laser shock peening on the hot corrosion behaviour of the selective laser melted Ti6Al4V titanium alloy[J]. Corrosion Science, 2021, 188: 109558. doi: 10.1016/j.corsci.2021.109558
[2] Pang Z W, Wang S X, Yin X L, et al. Effect of spindle speed during ultrasonic rolling on surface integrity and fatigue performance of Ti6Al4V alloy[J]. International Journal of Fatigue, 2022, 159: 106794. doi: 10.1016/j.ijfatigue.2022.106794
[3] Chen B, Meng Z, Yan S H, et al. Effects of oscillating molten pool flow on the weld formation and mechanical performance of titanium alloy joints[J]. Optics & Laser Technology, 2024, 177: 111156.
[4] Shui J, Chen S L, Xia T T, et al. Effect of non-equilibrium solid state phase transformation on welding temperature field during keyhole mode laser welding of Ti6Al4V alloy[J]. Optics & Laser Technology, 2022, 145: 107461.
[5] 徐良, 李康宁, 杨海锋, 等. 微织构特征对铝合金-CFRTP激光焊接头力学性能的影响[J]. 焊接学报, 2024, 45(2): 75 − 81. doi: 10.12073/j.hjxb.20230915001 Xu Liang, Li Kangning, Yang Haifeng, et al. Effect of microtexturing characteristics on the performance of laser welded aluminum alloy-CFRTP joints[J]. Transactions of the China Welding Institution, 2024, 45(2): 75 − 81. doi: 10.12073/j.hjxb.20230915001
[6] Chen C R, Liu C, Wang Q T, et al. Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components[J]. China Welding, 2023, 32(3): 51 − 66.
[7] Ai Y W, Wang Y Y, Yan Y C, et al. The evolution characteristics of solidification microstructure in laser welding of Ti-6Al-4V titanium alloy by considering transient flow field[J]. Optics & Laser Technology, 2024, 170: 110195.
[8] Li G W, Wang Y S, Liang Y H, et al. Microstructure and mechanical properties of laser welded Ti-6Al-4V (TC4) titanium alloy joints[J]. Optics & Laser Technology, 2024, 170: 110320.
[9] Rominiyi A L, Mashinini P M. A critical review of microstructure and mechanical properties of laser welded similar and dissimilar titanium alloy joints[J]. Journal of Advanced Joining Processes, 2024, 9: 100191. doi: 10.1016/j.jajp.2024.100191
[10] Zhao H J, Yu C, Liu Z, et al. A novel finite element method for simulating residual stress of TC4 alloy produced by laser additive manufacturing[J]. Optics & Laser Technology, 2023, 157: 108765.
[11] Wang F, Sun Z Z, Liu Z R, et al. Performance analysis on welded joints made of TC4/TA17 dissimilar titanium alloys[J]. Ocean Engineering, 2024, 294: 116758. doi: 10.1016/j.oceaneng.2024.116758
[12] Su R, Li H Z, Chen H, et al. Stability analysis and porosity inhibition mechanism of oscillating laser-arc hybrid welding process for medium-thick plate TC4 titanium alloy[J]. Optics & Laser Technology, 2024, 174: 110569.
[13] Liu Z G, Jin X Z, Li J H, et al. Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding[J]. Advances in Engineering Software, 2022, 172: 103200. doi: 10.1016/j.advengsoft.2022.103200
[14] Wang J N, Chen X, Yang L F, et al. Sequentially combined thermo-mechanical and mechanical simulation of double-pulse MIG welding of 6061-T6 aluminum alloy sheets[J]. Journal of Manufacturing Processes, 2022, 77: 616 − 631. doi: 10.1016/j.jmapro.2022.03.046
[15] Ma M Y, Lai R L, Qin J, et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: experiments and numerical simulations[J]. International Journal of Fatigue, 2021, 144: 106046. doi: 10.1016/j.ijfatigue.2020.106046
[16] Liu C, Luo Z Q, He Y, et al. Numerical simulation of welding residual stresses in 6082-T6 thin aluminum alloy[J]. Measurement, 2024, 234: 114800. doi: 10.1016/j.measurement.2024.114800
[17] Zhang G Y, Li W H, Xu G J, et al. Simulation of temperature field and residual stress in high-power laser self-melting welding process of CLF-1 steel medium-thick plate[J]. Fusion Engineering and Design, 2023, 195: 113936. doi: 10.1016/j.fusengdes.2023.113936
[18] Sheikhi M, Farhangian M, Jabbareh M A, et al. Heat affected zone evolution in fine grained aluminum alloys during laser welding: phase-field simulation and analytical investigation[J]. Optics & Laser Technology, 2024, 174: 110559.
[19] Zhao J Y, Zhang J H, Gao Q Y, et al. Research on microstructure evolution and tensile characteristics of Ti6Al4V double lap-fillet joints fabricated by dual laser-beam bilateral synchronous welding[J]. Optics & Laser Technology, 2022, 145: 107472.
[20] Wang X L, Jia Z Y, Ma J W, et al. Research on simulation of nanosecond pulsed laser processing for TC4 titanium alloy: a novel model simplification and correction method[J]. Optics & Laser Technology, 2022, 147: 107635.
[21] Wu Y H, Mao Y, Fu L, et al. Dual laser-beam synchronous self-fusion welding of Ti-6Al-4V titanium alloys T-joints based on prefabricated welding materials[J]. Journal of Materials Research and Technology, 2022, 17: 2560 − 2576. doi: 10.1016/j.jmrt.2022.02.014
[22] Cui M F, Zheng Z T, Du P, et al. Experimental and numerical simulation study of magnesium/aluminium dissimilar metal swing laser welding[J]. Materials Today Communications, 2024, 39: 108813. doi: 10.1016/j.mtcomm.2024.108813
[23] Chen M, Deng W L, Liu H B, et al. Enhancement of fatigue properties of selective laser melting fabricated TC4 alloy by multiple shot peening treatments[J]. International Journal of Fatigue, 2024, 182: 108215. doi: 10.1016/j.ijfatigue.2024.108215
[24] Kuliiev R, Keller S, Kashaev N. Identification of Johnson-Cook material model parameters for laser shock peening process simulation for AA2024, Ti-6Al-4V and Inconel 718[J]. Journal of Materials Research and Technology, 2024, 28: 1975 − 1989. doi: 10.1016/j.jmrt.2023.11.168
[25] Kumar R S, Yadav G V, Shankar G U, et al. A review on Johnson Cook material model[J]. Materials Today, 2022, 62: 3450 − 3456.
[26] Priest J, Ghadbeigi H, Ayvar-Soberanis S, et al. A modified Johnson-Cook constitutive model for improved thermal softening prediction of machining simulations in C45 steel[C]// CIRP Conference on Surface Integrity, June 8-10, 2022, The International Academy for Production Engineering, Lyon, France. Amsterdam: Elsevier BV, 2024: 106–111.
[27] Xu S N, Qian L Y, Sun C Y, et al. Investigation into the fracture behavior of ZK60 Mg alloy rolling sheet under different stress triaxiality[J]. Journal of Materials Research and Technology, 2023, 27: 7368 − 7379. doi: 10.1016/j.jmrt.2023.11.202
[28] Zhang Z, Wu Y Q, Huang F L. Effect of stress triaxiality cut-off value in the fracture criterion on predicting the ballistic behavior of Al2024-T351 plate impacted by blunt-hemisphere-and ogival-nosed projectiles[J]. Journal of Materials Research and Technology, 2023, 25: 138 − 165. doi: 10.1016/j.jmrt.2023.05.186
[29] Wu H F, Zhuang X C, Zhang W, et al. Anisotropic Gurson-Tvergaard-Needleman model considering the anisotropic void behaviors[J]. International Journal of Mechanical Sciences, 2023, 248: 108229. doi: 10.1016/j.ijmecsci.2023.108229
[30] Dou W, Xu Z J, Han Y, et al. Coupled effect of stress state and strain rate on ductile fracture of Ti6Al4V alloy[J]. International Journal of Impact Engineering, 2024, 187: 104898. doi: 10.1016/j.ijimpeng.2024.104898
-
期刊类型引用(1)
1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 . 百度学术
其他类型引用(0)