高级检索

TC4激光焊接热力耦合数值模拟及力学性能分析

丛家慧, 高嘉元, 周松, 王嘉豪, 王乃境, 林方旭

丛家慧, 高嘉元, 周松, 王嘉豪, 王乃境, 林方旭. TC4激光焊接热力耦合数值模拟及力学性能分析[J]. 焊接学报, 2024, 45(6): 77-88, 96. DOI: 10.12073/j.hjxb.20230315001
引用本文: 丛家慧, 高嘉元, 周松, 王嘉豪, 王乃境, 林方旭. TC4激光焊接热力耦合数值模拟及力学性能分析[J]. 焊接学报, 2024, 45(6): 77-88, 96. DOI: 10.12073/j.hjxb.20230315001
CONG Jiahui, GAO Jiayuan, ZHOU Song, WANG Jiahao, WANG Naijing, LIN Fangxu. Thermodynamic coupling numerical simulation and mechanical properties analysis of TC4 laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 77-88, 96. DOI: 10.12073/j.hjxb.20230315001
Citation: CONG Jiahui, GAO Jiayuan, ZHOU Song, WANG Jiahao, WANG Naijing, LIN Fangxu. Thermodynamic coupling numerical simulation and mechanical properties analysis of TC4 laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 77-88, 96. DOI: 10.12073/j.hjxb.20230315001

TC4激光焊接热力耦合数值模拟及力学性能分析

基金项目: 国家自然科学基金资助项目(52105157);辽宁省教育厅项目(JYT2020037).
详细信息
    作者简介:

    丛家慧,博士,讲师;主要研究航空材料及焊接结构表面强化及强度评定. Email: congjiahui2011@163.com

  • 中图分类号: TG 456.7

Thermodynamic coupling numerical simulation and mechanical properties analysis of TC4 laser welding

Funds: 000
  • 摘要:

    为了准确预测TC4钛合金激光焊接过程的温度变化和焊接后的力学性能,文中通过ABAQUS子程序建立了激光焊温度场模型,对激光焊接温度场进行模拟分析,并研究了焊接过程中的温度变化及焊接后残余应力变化. 试验检测了焊接接头的硬度和表面残余应力,并分析了显微组织. 结果表明,当热循环温度峰值达到2601 ℃时,熔池温度已显著高于液相线,熔池中无固相晶粒,主要呈现出材料熔化后凝固形成的少量柱状晶. 此外,越靠近焊缝的热影响区,晶粒越粗大,晶内马氏体的数量和密度也较高. 激光焊接后,焊缝区的显微硬度基本相同,表面显微硬度稍高,平均可达385 HV. 焊缝中间段沿焊接方向的纵向残余应力呈现均匀峰值,横向应力略小,纵向和横向中央平均应力误差分别为1.4%和2.9%,垂直焊缝方向的残余应力分布基本一致. 随后对焊接接头的力学性能进行了拉伸模拟研究,数值模拟得到的温度场和残余应力分布与试样焊后的组织形态和表面残余应力分布相符,拉伸试验和数值模拟的位移载荷变化数据相匹配,验证了激光焊接接头的温度场模型和拉伸断裂模型的可行性和准确性.

    Abstract:

    To accurately predict the temperature changes during the laser welding process of TC4 titanium alloy and the mechanical properties after welding, a laser welding temperature field model was established using ABAQUS subroutines. The temperature field during laser welding was simulated and analyzed, and the changes in temperature and residual stress during and after welding were studied. The hardness and surface residual stress of the welded joints were tested, and the microstructure was analyzed. The results showed that when the peak temperature of the thermal cycle reached 2601 ℃, the molten pool temperature was significantly higher than the liquidus line, there are no solid phase grains in the molten pool, but rather a small amount of columnar crystals formed after solidification. Additionally, the heat-affected zone near the weld had coarser grains, with higher quantity and density of martensite within the grains. After laser welding, the microhardness in the weld zone was consistent, with slightly higher surface microhardness, averaging 385 HV. The longitudinal residual stress along the welding direction showed a uniform peak in the middle of the weld, with slightly lower transverse stress. The average stress errors for the longitudinal and transverse central regions were 1.4% and 2.9%, respectively, and the residual stress distribution perpendicular to the weld direction was consistent. Subsequently, the mechanical properties of the welded joints were studied through tensile simulations. The temperature field and residual stress distribution obtained from numerical simulations matched the microstructure and surface residual stress distribution of the welded samples. The displacement-load data from tensile tests and numerical simulations also matched, proving the feasibility and accuracy of the laser welding temperature field model and the tensile fracture model.

  • 图  1   拉伸试样实物与尺寸图(mm)

    Figure  1.   Physical object and size diagram of tensile sample. (a) physical diagram of miniature tensile sample; (b) dimensional diagram of tensile sample

    图  2   焊接接头宏观形貌(mm)

    Figure  2.   Macroscopic morphology of welded joints. (a) cross-section of weld; (b) schematic diagram of measurement location

    图  3   激光焊接有限元模型示意图

    Figure  3.   Schematic diagram of finite element model for laser welding

    图  4   拉伸试样件模型示意图

    Figure  4.   Schematic diagram of tensile test specimen model

    图  5   组合热源示意图

    Figure  5.   Schematic diagram of combined heat source

    图  6   微型试样摘除引伸计前的真应力应变曲线

    Figure  6.   True stress-strain curve before microspecimen removal from extensometer

    图  7   模拟的各缺口试样三轴度应力分布

    Figure  7.   Three-axial stress distribution of simulated notched specimens

    图  8   模拟的各缺口试样参数曲线

    Figure  8.   Parameter curves of simulated notched specimens. (a) three-axial stress of TC4 base metal; (b) three-axial stress of TC4 weld

    图  9   不同焊接区的应力三轴性-断裂应变

    Figure  9.   Stress triaxiality-fracture strain for different welding zones

    图  10   实际和模拟的激光焊接接头横截面形态(mm)

    Figure  10.   Actual and simulated cross-sectional morphology of laser-welded joint

    图  11   激光焊接显微组织

    Figure  11.   Microstructure in laser-welded joint. (a) microstructure in base metal zone in region I; (b) microstructure in heat-affected zone in region Ⅱ; (c) microstructure in weld zone in region Ⅲ

    图  12   激光焊接内部温度场的三点热循环曲线

    Figure  12.   Three-point thermal cycle curve of laser welding internal temperature field

    图  13   不同时间焊接钛合金板的模拟温度分布云图

    Figure  13.   Simulated temperature distribution cloud images of titanium alloy plates welded at different times. (a) t = 0.4934 s; (b) t = 1.512 s; (c) t = 2.307 s; (d) t = 3.050 s

    图  14   残余应力分布云图

    Figure  14.   Cloud map of residual stress distribution. (a) along the weld direction; (b) perpendicular to the weld direction

    图  15   残余应力分布曲线

    Figure  15.   Residual stress distribution curve. (a) perpendicular to the weld direction; (b) along the weld direction

    图  16   拉伸仿真验证

    Figure  16.   Tensile simulation verification. (a) stress contour map before fracture; (b) stress contour map after fracture; (c) post-fracture image of laser-welded specimen; (d) displacement-load curve of experimental and simulated results

    图  17   断裂前试样伸拉应力分布

    Figure  17.   Tensile stress distribution of the specimen before fracture. (a) stress contour map under tension; (b) stress values at integration nodes along path 1

    图  18   断裂前试样剪切应力分布

    Figure  18.   Shear stress distribution of the specimen before fracture. (a) shear stress contour map; (b) shear stress value at integration node along path 2

    图  19   TC4激光焊接接头显微硬度

    Figure  19.   Microhardness distribution of TC4 laser-welded joints. (a) microhardness distribution; (b) average microhardness of weld zone

    表  1   TC4钛合金化学成分(质量分数,%)

    Table  1   Chemical composition of TC4 titanium alloy

    AlVFeCNHOTi
    6.023.790.030.050.040.0130.065余量
    下载: 导出CSV

    表  2   激光焊接参数

    Table  2   Laser welding parameters

    激光功率
    P/W
    焊接速度
    v /(m∙min−1)
    氩气流速
    Q/(L∙min−1)
    光斑直径
    dmn / mm
    离焦量
    df /mm
    3000261.52.6
    下载: 导出CSV

    表  3   TC4 温度相关属性

    Table  3   Temperature-related properties of TC4

    温度
    T/℃
    热导率
    K/(W·(m·℃)−1)
    比热
    C/(J·(kg·℃)−1)
    膨胀系数
    α/(10−5−1)
    杨氏模量
    E/GPa
    屈服强度
    Rp0.2/MPa
    202001.29506200.001919050110825
    2502494.76506500.001924533101600
    5003454.29007000.00193001690400
    6253372.04506950.00193549975300
    7503481.70507100.00193549960200
    8003563.95007150.00193824155250
    9003618.78007100.0019409825130
    10003701.02507200.0019409825035
    15003714.73257180.0019464654810
    20003728.44007170.001951948455
    25003742.14757000.001960173155
    下载: 导出CSV

    表  4   TC4 固有属性

    Table  4   Inherent properties of TC4 titanium alloy

    密度
    ρ/(kg·m−3)
    泊松比
    μ
    蒸发潜热[15]
    T3/(j·kg−1)
    固相温度 [21]
    T1/℃
    液相的温度[21]
    T2/℃
    45000.33983000014491630.6
    下载: 导出CSV

    表  5   焊接接头的力学性能

    Table  5   Mechanical properties of welded joints

    力学性能焊缝母材
    弹性模量 E/GPa93.5882.30
    泊松比 μ0.340.34
    屈服强度 Rp0.2/MPa748.84997.00
    硬化常数 B812.00998.00
    硬化指数 n0.470.44
    下载: 导出CSV

    表  6   各试样对应的应力三轴度

    Table  6   Stress triaxiality corresponding to each specimen

    区域应力三轴度$ {\mathrm{\sigma }}^{*} $
    R0R4R2R1
    母材0.3330.4610.5220.578
    焊缝0.3330.4550.5150.574
    下载: 导出CSV

    表  7   焊接接头Johnson-Cook损伤模型参数表

    Table  7   Johnson-Cook damage model parameters for welded joints

    区域断裂系数
    D1D2D3
    母材−0.1970.82511.9212
    焊缝−0.3070.51331.0476
    下载: 导出CSV
  • [1]

    Lu H F, Wang Z, Cai J, et al. Effects of laser shock peening on the hot corrosion behaviour of the selective laser melted Ti6Al4V titanium alloy[J]. Corrosion Science, 2021, 188: 109558. doi: 10.1016/j.corsci.2021.109558

    [2]

    Pang Z W, Wang S X, Yin X L, et al. Effect of spindle speed during ultrasonic rolling on surface integrity and fatigue performance of Ti6Al4V alloy[J]. International Journal of Fatigue, 2022, 159: 106794. doi: 10.1016/j.ijfatigue.2022.106794

    [3]

    Chen B, Meng Z, Yan S H, et al. Effects of oscillating molten pool flow on the weld formation and mechanical performance of titanium alloy joints[J]. Optics & Laser Technology, 2024, 177: 111156.

    [4]

    Shui J, Chen S L, Xia T T, et al. Effect of non-equilibrium solid state phase transformation on welding temperature field during keyhole mode laser welding of Ti6Al4V alloy[J]. Optics & Laser Technology, 2022, 145: 107461.

    [5] 徐良, 李康宁, 杨海锋, 等. 微织构特征对铝合金-CFRTP激光焊接头力学性能的影响[J]. 焊接学报, 2024, 45(2): 75 − 81. doi: 10.12073/j.hjxb.20230915001

    Xu Liang, Li Kangning, Yang Haifeng, et al. Effect of microtexturing characteristics on the performance of laser welded aluminum alloy-CFRTP joints[J]. Transactions of the China Welding Institution, 2024, 45(2): 75 − 81. doi: 10.12073/j.hjxb.20230915001

    [6]

    Chen C R, Liu C, Wang Q T, et al. Effects of heat input on layer heterogeneity of selective laser melting Ti-6Al-4V components[J]. China Welding, 2023, 32(3): 51 − 66.

    [7]

    Ai Y W, Wang Y Y, Yan Y C, et al. The evolution characteristics of solidification microstructure in laser welding of Ti-6Al-4V titanium alloy by considering transient flow field[J]. Optics & Laser Technology, 2024, 170: 110195.

    [8]

    Li G W, Wang Y S, Liang Y H, et al. Microstructure and mechanical properties of laser welded Ti-6Al-4V (TC4) titanium alloy joints[J]. Optics & Laser Technology, 2024, 170: 110320.

    [9]

    Rominiyi A L, Mashinini P M. A critical review of microstructure and mechanical properties of laser welded similar and dissimilar titanium alloy joints[J]. Journal of Advanced Joining Processes, 2024, 9: 100191. doi: 10.1016/j.jajp.2024.100191

    [10]

    Zhao H J, Yu C, Liu Z, et al. A novel finite element method for simulating residual stress of TC4 alloy produced by laser additive manufacturing[J]. Optics & Laser Technology, 2023, 157: 108765.

    [11]

    Wang F, Sun Z Z, Liu Z R, et al. Performance analysis on welded joints made of TC4/TA17 dissimilar titanium alloys[J]. Ocean Engineering, 2024, 294: 116758. doi: 10.1016/j.oceaneng.2024.116758

    [12]

    Su R, Li H Z, Chen H, et al. Stability analysis and porosity inhibition mechanism of oscillating laser-arc hybrid welding process for medium-thick plate TC4 titanium alloy[J]. Optics & Laser Technology, 2024, 174: 110569.

    [13]

    Liu Z G, Jin X Z, Li J H, et al. Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding[J]. Advances in Engineering Software, 2022, 172: 103200. doi: 10.1016/j.advengsoft.2022.103200

    [14]

    Wang J N, Chen X, Yang L F, et al. Sequentially combined thermo-mechanical and mechanical simulation of double-pulse MIG welding of 6061-T6 aluminum alloy sheets[J]. Journal of Manufacturing Processes, 2022, 77: 616 − 631. doi: 10.1016/j.jmapro.2022.03.046

    [15]

    Ma M Y, Lai R L, Qin J, et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: experiments and numerical simulations[J]. International Journal of Fatigue, 2021, 144: 106046. doi: 10.1016/j.ijfatigue.2020.106046

    [16]

    Liu C, Luo Z Q, He Y, et al. Numerical simulation of welding residual stresses in 6082-T6 thin aluminum alloy[J]. Measurement, 2024, 234: 114800. doi: 10.1016/j.measurement.2024.114800

    [17]

    Zhang G Y, Li W H, Xu G J, et al. Simulation of temperature field and residual stress in high-power laser self-melting welding process of CLF-1 steel medium-thick plate[J]. Fusion Engineering and Design, 2023, 195: 113936. doi: 10.1016/j.fusengdes.2023.113936

    [18]

    Sheikhi M, Farhangian M, Jabbareh M A, et al. Heat affected zone evolution in fine grained aluminum alloys during laser welding: phase-field simulation and analytical investigation[J]. Optics & Laser Technology, 2024, 174: 110559.

    [19]

    Zhao J Y, Zhang J H, Gao Q Y, et al. Research on microstructure evolution and tensile characteristics of Ti6Al4V double lap-fillet joints fabricated by dual laser-beam bilateral synchronous welding[J]. Optics & Laser Technology, 2022, 145: 107472.

    [20]

    Wang X L, Jia Z Y, Ma J W, et al. Research on simulation of nanosecond pulsed laser processing for TC4 titanium alloy: a novel model simplification and correction method[J]. Optics & Laser Technology, 2022, 147: 107635.

    [21]

    Wu Y H, Mao Y, Fu L, et al. Dual laser-beam synchronous self-fusion welding of Ti-6Al-4V titanium alloys T-joints based on prefabricated welding materials[J]. Journal of Materials Research and Technology, 2022, 17: 2560 − 2576. doi: 10.1016/j.jmrt.2022.02.014

    [22]

    Cui M F, Zheng Z T, Du P, et al. Experimental and numerical simulation study of magnesium/aluminium dissimilar metal swing laser welding[J]. Materials Today Communications, 2024, 39: 108813. doi: 10.1016/j.mtcomm.2024.108813

    [23]

    Chen M, Deng W L, Liu H B, et al. Enhancement of fatigue properties of selective laser melting fabricated TC4 alloy by multiple shot peening treatments[J]. International Journal of Fatigue, 2024, 182: 108215. doi: 10.1016/j.ijfatigue.2024.108215

    [24]

    Kuliiev R, Keller S, Kashaev N. Identification of Johnson-Cook material model parameters for laser shock peening process simulation for AA2024, Ti-6Al-4V and Inconel 718[J]. Journal of Materials Research and Technology, 2024, 28: 1975 − 1989. doi: 10.1016/j.jmrt.2023.11.168

    [25]

    Kumar R S, Yadav G V, Shankar G U, et al. A review on Johnson Cook material model[J]. Materials Today, 2022, 62: 3450 − 3456.

    [26]

    Priest J, Ghadbeigi H, Ayvar-Soberanis S, et al. A modified Johnson-Cook constitutive model for improved thermal softening prediction of machining simulations in C45 steel[C]// CIRP Conference on Surface Integrity, June 8-10, 2022, The International Academy for Production Engineering, Lyon, France. Amsterdam: Elsevier BV, 2024: 106–111.

    [27]

    Xu S N, Qian L Y, Sun C Y, et al. Investigation into the fracture behavior of ZK60 Mg alloy rolling sheet under different stress triaxiality[J]. Journal of Materials Research and Technology, 2023, 27: 7368 − 7379. doi: 10.1016/j.jmrt.2023.11.202

    [28]

    Zhang Z, Wu Y Q, Huang F L. Effect of stress triaxiality cut-off value in the fracture criterion on predicting the ballistic behavior of Al2024-T351 plate impacted by blunt-hemisphere-and ogival-nosed projectiles[J]. Journal of Materials Research and Technology, 2023, 25: 138 − 165. doi: 10.1016/j.jmrt.2023.05.186

    [29]

    Wu H F, Zhuang X C, Zhang W, et al. Anisotropic Gurson-Tvergaard-Needleman model considering the anisotropic void behaviors[J]. International Journal of Mechanical Sciences, 2023, 248: 108229. doi: 10.1016/j.ijmecsci.2023.108229

    [30]

    Dou W, Xu Z J, Han Y, et al. Coupled effect of stress state and strain rate on ductile fracture of Ti6Al4V alloy[J]. International Journal of Impact Engineering, 2024, 187: 104898. doi: 10.1016/j.ijimpeng.2024.104898

  • 期刊类型引用(1)

    1. 蒋凡,张成钰,徐斌,张国凯,闫朝阳,陈树君. 变极性等离子弧焊技术发展及其在航天制造领域应用现状. 航天制造技术. 2024(03): 15-26 . 百度学术

    其他类型引用(0)

图(19)  /  表(7)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  15
  • PDF下载量:  55
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-03-14
  • 网络出版日期:  2024-06-06
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回