[1] 苗玉刚, 李春旺, 尹晨豪, 等. 船用铝/钢焊接接头BC-MIG电弧增材制造工艺[J]. 焊接学报, 2019, 40(12): 129 − 132.

Miao Yugang, Li Chunwang, Yin Chenhao, et al. Study on additive manufacturing of BC-MIG for marine aluminum/steel welded joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 129 − 132.
[2] 石玗, 梁琪, 张刚, 等. 激光毛化对铝/钢电弧熔钎焊接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29. doi:  10.12073/j.hjxb.20190916002

Shi Yu, Liang Qi, Zhang Gang, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29. doi:  10.12073/j.hjxb.20190916002
[3] 王晓虹, 谷晓燕, 孙大千. 钢/铝异种金属激光焊接头界面特性的研究[J]. 机械工程学报, 2017, 53(4): 26 − 33. doi:  10.3901/JME.2017.04.026

Wan Xiaohong, Gu Xiaoyan, Sun Daqian. Research on interface characteristic of laser welding joints of steel/aluminum dissimilar materials[J]. Journal of Mechanical Engineering, 2017, 53(4): 26 − 33. doi:  10.3901/JME.2017.04.026
[4] 张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39(1): 61 − 64. doi:  10.12073/j.hjxb.2018390014

Zhang Man, Zhang Jun, Jiang Teng, et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Transactions of the China Welding Institution, 2018, 39(1): 61 − 64. doi:  10.12073/j.hjxb.2018390014
[5] Kim Y J. Analysis of oxide film formed on type 304 stainless steel in 288 ℃ water containing oxygen, hydrogen, and hydrogen peroxide[J]. Corrosion, 1999, 55(1): 81 − 88. doi:  10.5006/1.3283969
[6] Song J L, Lin S B, Yang C L, et al. Effects of Si additions on intermetallic compound layer of aluminum-steel TIG welding-brazing joint[J]. Journal of Alloys and Compounds, 2009, 488(1): 217 − 222. doi:  10.1016/j.jallcom.2009.08.084
[7] Deng S, Yuan R, Tang X, et al. Migration behavior of IMC layer in twin-spot laser welding-brazing of aluminum to steel[J]. Materials & Design, 2020, 188: 108489.
[8] Xu H, Gao P, Cong W, et al. Arc joining of aluminum alloy to stainless steel with the aid of milling[J]. Materials Science and Technology, 2018, 35(5): 1 − 9.
[9] Xu H B, Cong W, Yang D H, et al. Microstructure and mechanical performance of dissimilar metal joints of aluminum alloy and stainless steel by cutting-assisted welding-brazing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(7-8): 4411 − 4421. doi:  10.1007/s00170-021-08452-x
[10] Budak E. Analytical models for high performance milling, Part I: Cutting forces, structural deformations and tolerance integrity[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13): 1478 − 1488. doi:  10.1016/j.ijmachtools.2005.09.009
[11] Gupta S P. Intermetallic compound formation in Fe-Al-Si ternary system: Part I[J]. Materials Characterization, 2002, 49(4): 269 − 291. doi:  10.1016/S1044-5803(03)00006-8
[12] Chen J, Amirkhiz B S, Zhang R, et al. On the joint formation and interfacial microstructure of cold metal transfer cycle step braze welding of aluminum to steel butt joint[J]. Metallurgical and Materials Transactions A, 2020, 51(10): 5198 − 5212. doi:  10.1007/s11661-020-05917-8
[13] 王鹏潇. 5052铝合金/钢熔钎焊界面反应行为的研究[D]. 大连: 大连理工大学, 2019.

Wang Pengxiao. The study on aluminum/steel interface layer based on synchrotron radiation [D]. Dalian: Dalian University of Technology, 2019.
[14] 李军兆. 磁场辅助钛/铝异种金属MIG熔-钎焊工艺及机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

Li Junzhao. Research on process and mechanism of magnetic field assisted MIG welding-brazing for Ti/Al dissimilar alloys [D]. Harbin: Harbin Institute of Technology, 2017.
[15] Kim B G, Dong S L, Park S D. Effects of thermal processing on thermal expansion coefficient of a 50 vol.% SiCp/Al composite[J]. Materials Chemistry and Physics, 2001, 72(1): 42 − 47. doi:  10.1016/S0254-0584(01)00306-6
[16] Rivera J, Hosseini M S, Restrepo D, et al. Toughening mechanisms of the elytra of the diabolical ironclad beetle[J]. Nature, 2020, 586: 543 − 548. doi:  10.1038/s41586-020-2813-8